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Disclaimer	

•  Slides	for	the	EJCP	2018	course	
–  ~French	summer	school	for	PhD	candidates	in	

programming,	verification,	software	engineering,	etc.	

•  Abstract:	Most	modern	software	systems	are	subject	to	variation	or	come	in	many	variants.	Web	browsers	like	Firefox	or	Chrome	

are	available	on	different	operating	systems,	in	different	languages,	while	users	can	configure	2000+	preferences	or	install	numerous	

3rd	parties	extensions	(or	plugins).	Web	servers	like	Apache,	operating	systems	like	the	Linux	kernel,	or	a	video	encoder	like	x264	are	

other	examples	of	software	systems	that	are	highly	configurable	at	compile-time	or	at	run-time	for	delivering	the	expected	functionality	

andmeeting	the	various	desires	of	users.	Variability	("the	ability	of	a	software	system	or	artifact	to	be	efficiently	extended,	

changed,customized	or	configured	for	use	in	a	particular	context")	is	therefore	a	crucial	property	of	software	systems.	Organizations	

capable	of	mastering	variability	can	deliver	high-quality	variants	(or	products)	in	a	short	amount	of	time	and	thus	attract	numerous	

customers,	new	use-cases	or	usage	contexts.	A	hard	problem	for	end-users	or	software	developers	is	to	master	the	combinatorial	

explosion	induced	by	variability:	Hundreds	of	configuration	options	can	be	combined,	each	potentially	with	distinct	functionality	and	

effects	on	execution	time,	memory	footprint,	quality	of	the	result,	etc.	The	first	part	of	this	course	will	introduce	variability-intensive	

systems,	their	applications	and	challenges,	in	various	software	contexts.	We	will	use	intuitive	examples	(like	a	generator	of	LaTeX	paper	

variants)	and	real-world	systems	(like	the	Linux	kernel).	A	second	objective	of	this	course	is	to	show	the	relevance	of	Artificial	Intelligence	

(AI)	techniques	for	exploring	and	taming	such	enormous	variability	spaces.	In	particular,	we	will	introduce	how	(1)	satisfiability	and	

constraint	programming	solvers	can	be	used	to	properly	model	and	reason	about	variability;	(2)	how	machine	learning	can	be	used	to	

discover	constraints	and	predict	the	variability	behavior	of	configurable	systems	or	software	product	lines.	

•  https://ejcp2018.sciencesconf.org/resource/page/id/5	

•  I	had	45	minutes	+	105	minutes	(less	than	3	hours)	

•  Some	results	have	not	been	published	yet	



Successfully	submitted	for	VaMoS’18		

(on	time	and	meeting	formatting	instructions)				

and	then	accepted	

http://phdcomics.com/comics.php?f=1971	

	



(live	demonstration)	





Two	case	studies	

•  FSE	paper	(see	demonstration)	

– Page	limit:	4	

– Accuracy:	~85%	with	40	papers	in	the	training	set	

(there	are	73,440	valid	configurations)	

•  Curiculum	vitae	generation		

– 18	pages	limit;	5	Boolean	options;	full	generation,	

only	32	papers	(not	need	to	learn	here)	



Process	



AI#1	Logic,	satisfiability,	constraints,	
reasoning,	solving	



AI#2	Statistical,	supervised	machine	learning		

(classification	problem)	



#AI1	+	#AI2	

Specialization	of	the	variability	model	

https://github.com/FAMILIAR-project/varylatex/	





Classification	tree	



Agenda	

•  Software	Variability:	An	Overview	
–  VaryLaTeX	

–  Linux,	video	generator,	3D	printing,	etc.	

–  Testing	26K+	configurations	of	JHipster	

•  AI1:	Modeling		and	Reasoning	about	Variability	

–  Feature	models:	syntax,	semantics,	and	logics	

•  AI2:	Learning	Variability	
–  Statistical	supervised	machine	learning	

•  AI	for	fitting	Software	Variability	



VaryLaTeX	

an	instance	of	a	more	general	problem		

	

(and	solution	based	on	artificial	intelligence	and	

software	engineering	techniques)		



Variability 

•  “the ability of a software system or artifact to be 
efficiently extended, changed, customized or 
configured for use in a particular 
context” (Svahnberg et al. 2005) 

–  software/customization perspective  

•  Terminology 

– Software product lines, configurable systems, 
variability-intensive systems 

– Options, features, variation points 



Software	Variability	

•  Configurable	system	

VaryLaTeX	

•  Configuration	options	(aka	software	features)	

template	variables	of	a	LaTeX	file	

•  Variants	

LaTeX	source	and	PDF	variants	(papers)		

•  Large	variability	spaces		

73,440	possible	variants	

	



Software	Variability	

•  Configurable	system	

Linux	operating	system	

•  Configuration	options	(aka	software	features)	

conditional	compilation	(#ifdef)	in	C	files	

•  Variants	

Linux	kernel	variants		

•  Large	variability	spaces		

16,000	options	(~“yes”,	“no”,	“module”)	

	



Linux	

Kernel	



Software	Variability	

•  Configurable	system	

Firefox	web	browser	

•  Configuration	options	(aka	software	features)	

feature	flags	(about:config)	

•  Variants	

Firefox	behavior	(e.g.,	security)	

•  Large	variability	spaces		

2000+	options	(Boolean,	categorical,	numeric)	

	



Software	Variability	

•  Configurable	system	

Scikit	

•  Configuration	options	(aka	software	features)	

Hyper-parameters	

•  Variants	

Machine	learning	algorithm	behavior		

•  Large	variability	spaces		

Dozens	of	options	(Boolean,	categorical,	numerical)	

	



Software	Variability	

•  Configurable	system	

x264	video	encoder	

•  Configuration	options	(aka	software	features)	

command	line	parameters	

•  Variants	

x264	behavior	(different	outputs,	execution	time,	etc.)	

•  Large	variability	spaces		

Dozens	of	options	(Boolean,	categorical,	numeric)	

	



x264	--no-progress		

					--no-asm		

					--rc-lookahead	60		

					--ref	9		

					-o	trailer_480p24.x264	

					trailer_2k_480p24.y4m	

40 seconds 



23	

“Reverse	Engineering	Web	Configurators”	Ebrahim	Khalil	Abbasi,	Mathieu	Acher,	Patrick	

Heymans,	and	Anthony	Cleve.	In	17th	European	Conference	on	Software	Maintenance	and	

Reengineering	(CSMR'14)	





25	

«	Feature	Model	Extraction	from	Large	Collections	of	Informal	Product	Descriptions	»		

Jean-Marc	Davril,	Edouard	Delfosse,	Negar	Hariri,	Mathieu	Acher,	Jane	Cleland-Huang,	Patrick	

Heymans	(ESEC/FSE’13)	



26	

«	Extraction	and	Evolution	of	Architectural	Variability	Models	in	Plugin-based	Systems	»			

Mathieu	Acher,	Anthony	Cleve,	Philippe	Collet,	Philippe	Merle,	Laurence	Duchien,	Philippe	

Lahire	ECSA/SoSyM’14	

FraSCAti

SCAParser

Java Compiler

JDK6 JDT

Optional

Mandatory

Alternative-

Group

Or-Group

Assembly Factory

resthttp

Binding

MMFrascati

Component Factory

Metamodel

MMTuscany

constraints

rest requires MMFrascati

http requires MMTuscany

FM1

Variability	Model	



Printer	

Firmware	



Guillaume	Bécan,	Nicolas	Sannier,	Mathieu	Acher,	Olivier	Barais,	Arnaud	Blouin,	and	Benoit	Baudry.	

Automating	the	Formalization	of	Product	Comparison	Matrices	(2014).	In	29th	IEEE/ACM	International	

Conference	on	Automated	Software	Engineering	(ASE'14)	



José	A.	Galindo,	Mauricio	Alférez,	Mathieu	Acher,	Benoit	Baudry,	David	Benavides:	

A	variability-based	testing	approach	for	synthesizing	video	sequences.	ISSTA	2014:	



30	

Mathieu	Acher,	Benoit	Baudry,	Olivier	Barais,	Jean-Marc	Jézéquel:	

Customization	and	3D	printing:	a	challenging	playground	for	software	product	lines.		

SPLC	2014:	142-146	



Case	study:	JHipster	

●  Web-apps	generator	

○  Spring-Boot	

○  Bootstrap	/	AngularJS	

○  100	%	Open	Source	

	

●  Yeoman	

○  Bower,	npm	

○  yo	

●  Used	all	over	the	world	

○  Large	companies	(HBO,	Google,	Adobe)1	

○  Independent	developers		

○  Our	students	

●  GitHub	

○  6000+	stars	

○  118	releases	(JHipster	3.6.1,	18	Aug	2016)	

○  300+	contributors	

	1	https://jhipster.github.io/companies-using-jhipster/	
31	
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Software	Variability:	Problems	

•  Very	large	variability	

spaces		

•  Software	developers:	

How	to	ensure	that	all	

software	variants	are	

“valid”?		



Software	is	working	(sometimes)	

○ yes	but	perhaps	for	one	specific	

configuration	(the	default	one)	

○  is	it	working	for	all	configurations?		

	

Software	Variability	

35	



○  No	and	you	certainly	have	very	good	reasons	
■  needs	lots	of	resources	(machines!);	don’t	want	to	burn	the	planet	

■  needs	an	engineering	effort	to	instrument	testing	of	all	configurations	

■  the	number	of	configurations	is	too	important	(eg	2^16000	for	Linux)	
	

	

At	each	modification/commit/push/release,	do	

you	test	all	configurations?		

36	



○ No	since	too	much	resources	and	effort	

(impossible	and	unpractical)	

○ “Sampling”	techniques	(subset	of	

configurations)		
■ Apel	et	al.	ICSE’16,	Kaestner	et	al.	ICSE’14	and	

ASE’16,	Ana	B.	Sánchez	et	al.	SoSyM	2017,	

Perrouin	et	al.	ICST’10,	Cohen	et	al.	TSE’06,	Henard	

et	al.	TSE’14,	etc.	
■  Many	papers	at	SPLC,	FSE,	ASE,	ICSE,	ESE,	TSE	on	this	topic	

What	is	the	cost-effective	sampling	strategy	

to	test	configurations	of	a	system?		
	

At	each	modification/commit/push/release,	

do	you	test	all	configurations?		

37	



Is	it	Worth	testing	All	Configurations?	

Testing	with	

the	

community	

	

ALL	

Sampling	

38	



●  We	have	tested	all	configurations	of	an	industrial-strength,	

open-source	generator	(Jhipster)	

●  26K+	configurations,	4376	hours/machine,	8	man/month	

●  “Ground	truth”	allows	us	to	precisely	assess	sampling		

36%	failures	explained	by	6	feature	

interactions	(faults)	
●  What	is	the	most	cost-effective	sampling	strategy?	

○  T-wise	or	dissimilarity	are	very	effective	

○  with	“only”	126	configurations	you	can	detect	all	6	most	important	

faults	

39	

Axel	Halin,	Alexandre	Nuttinck,	Mathieu	Acher,	Xavier	Devroey,	Gilles	Perrouin,	Benoit	Baudry.		

Test	them	all,	is	it	worth	it?	Assessing	configuration	sampling	on	the	JHipster	Web	development	stack	

(2018).	In	Empirical	Software	Engineering	journal	



Software	Variability:	Problems	

•  Very	large	variability	

spaces		

•  Software	users:	How	to	

choose	the	configuration	

that	fits	my	

requirements?		

x264	--longhelp	|	wc	-l	

					176	



Software	Variability	and		

Artificial	Intelligence	

•  Very	large	variability	spaces		

•  AI#1	Abstraction/languages	to	formally	and	efficiently	

reason	about	configuration	spaces	
–  with	SAT/CSP/SMT	solvers		

–  Eg	constrained	sampling		

•  AI#2	Statistical	machine	learning	to	(out	of	a	sample):	
–  Understand	the	configuration	space			

–  Find	the	best	configuration	

–  Specialize	the	configuration	space	(e.g.,	by	capturing	constraints)	

–  In	a	cost-effective	way		

•  Humans	(developers,	end-users,	integrator,	scientists,	

etc.)	and	machines		



(end	of	the	first	part)	



Modeling	Variability	

•  Very	large	variability	spaces		

•  AI#1	Abstraction/languages	to	formally	and	

efficiently	reason	about	configuration	spaces	
–  with	SAT/CSP/SMT	solvers		

–  Eg	constrained	sampling		

•  Variability	Models	

–  Elaborated	by	humans	

–  Reverse	engineered	from	existing	artefacts/systems		

–  Promise:	sound	and	complete	representation	of	the	

configuration	space		



AI#1	Logic,	satisfiability,	constraints,	
reasoning,	solving	



Linux	



Variability	Model		

Configuration	

Base	Artefacts	(e.g.,	

models)	

Software	Generator	
(derivation	engine)	

ü	 ü	

mapping		



Simple	question:		

what	are	the	constraints	over		

WORLD	and	BYE?	



Variability	Model		

Configuration	

Base	Artefacts	(e.g.,	

models)	

Software	Generator	
(derivation	engine)	

ü	 ü	

mapping		



49	

Unused	flexibility	



50	

Illegal	variant	



	

Feature	Model	
	
Communicative	

	

Analytic	

	

Generative	

	
51	

not, and, or, implies



Feature	Models		
(defacto	standard	for	modeling	variability)	

52	

Hierarchy:	rooted	tree		

Variability:		
•  mandatory,		

•  optional,		

•  Groups:	exclusive	or	inclusive	features	

•  Cross-tree	constraints	

Optional

Mandatory

Xor-Group

Or-Group



53	

Hierarchy	+	Variability		

=		

set	of	valid	configurations	

{CarEquipment,	Comfort,	DrivingAndSafety,	Healthing,	AirConditioning,	FrontFogLights}	

configuration	=	set	of	features	selected	

Optional

Mandatory

Xor-Group

Or-Group



54	

Hierarchy	+	Variability		

=		

set	of	valid	configurations	

{CarEquipment,	Comfort,	DrivingAndSafety,	Healthing,	AirConditioning}	

configuration	=	set	of	features	selected	

Optional

Mandatory

Xor-Group

Or-Group



55	

Hierarchy	+	Variability		

=		

set	of	valid	configurations	

Optional

Mandatory

Xor-Group

Or-Group

{CarEquipment,	Comfort,	DrivingAndSafety,	Healthing,	AirConditioning,	

AutomaticHeadLights}	

configuration	=	set	of	features	selected	

ü	
ü	

ü	

ü	

ü	

ü	



56	

Hierarchy	+	Variability		

=		

set	of	valid	configurations	

Optional

Mandatory

Xor-Group

Or-Group

{AirConditioning,	FrontFogLights}	

{AutomaticHeadLights,	AirConditioning,	FrontFogLights}	

{AutomaticHeadLights,	FrontFogLights,	AirConditioningFrontAndRear}	

{AirConditioningFrontAndRear}	

{AirConditioning}	

{AirConditioningFrontAndRear,	FrontFogLights}	

{CarEquipment,	Comfort,	

DrivingAndSafety,	

Healthing}	 X



57	

Hierarchy	+	Variability		

=		

set	of	valid	configurations	

Optional

Mandatory

Xor-Group

Or-Group

{AirConditioning,	FrontFogLights}	

{AutomaticHeadLights,	AirConditioning,	FrontFogLights}	

{AutomaticHeadLights,	FrontFogLights,	AirConditioningFrontAndRear}	

{AirConditioningFrontAndRear}	

{AirConditioning}	

{AirConditioningFrontAndRear,	FrontFogLights}	

{CarEquipment,	Comfort,	

DrivingAndSafety,	

Healthing}	 X



58	

Hierarchy	+	Variability		

=		

set	of	valid	configurations	

Optional

Mandatory

Xor-Group

Or-Group

{AirConditioning,	FrontFogLights}	

{AutomaticHeadLights,	AirConditioning,	FrontFogLights}	

{AutomaticHeadLights,	FrontFogLights,	AirConditioningFrontAndRear}	

{AirConditioningFrontAndRear}	

{AirConditioning}	

{AirConditioningFrontAndRear,	FrontFogLights}	

{CarEquipment,	Comfort,	

DrivingAndSafety,	

Healthing}	 X



59	

Hierarchy	+	Variability		

=		

set	of	valid	configurations	

Optional

Mandatory

Xor-Group

Or-Group

{AirConditioning,	FrontFogLights}	

{AutomaticHeadLights,	AirConditioning,	FrontFogLights}	

{AutomaticHeadLights,	FrontFogLights,	AirConditioningFrontAndRear}	

{AirConditioningFrontAndRear}	

{AirConditioning}	

{AirConditioningFrontAndRear,	FrontFogLights}	

{CarEquipment,	Comfort,	

DrivingAndSafety,	

Healthing}	 X



60	

Hierarchy	+	Variability		

=		

set	of	valid	configurations	

{CarEquipment,	Comfort,	DrivingAndSafety,	Healthing,	AirConditioning}	

configuration	=	set	of	features	selected	

Optional

Mandatory

Xor-Group

Or-Group



61	

Hierarchy	+	Variability		

=		

set	of	valid	configurations	

Optional

Mandatory

Xor-Group

Or-Group

Boolean	logic:	^,	v,	not,	implies	



62	

Hierarchy	+	Variability		

=		

set	of	valid	configurations	

Optional

Mandatory

Xor-Group

Or-Group

Or-group:	at	least	one!	



63	

Hierarchy	+	Variability		

=		

set	of	valid	configurations	

Optional

Mandatory

Xor-Group

Or-Group

{CarEquipment,	Comfort,	

DrivingAndSafety,	

Healthing}	 X

{AirConditioningFrontAndRear,	FrontFogLights,	SAControl}	

{AirConditioningFrontAndRear,	SAControl}	

{AutomaticHeadLights,	AirConditioning,	FrontFogLights}	

{AirConditioningFrontAndRear,	SAControl,	AutomaticHeadLights,	FrontFogLights}	

{FrontFogLights,	AirConditioning}	

{AutomaticHeadLights,	AirConditioningFrontAndRear,	FrontFogLights}	

{FrontFogLights,	AirConditioningFrontAndRear}	

{SAControl,	AirConditioning}	



φ 

(Boolean)		

Feature	Models	

(Boolean)		

Product	Comparison	Matrix	

(Boolean)	

Formula	



(Boolean)	Feature	Models	

65	

Hierarchy	+	Variability	=	set	of	valid	configurations	

Optional

Mandatory

Xor-Group

Or-Group

fm1	



(Boolean)	Feature	Models	

66	

~	Boolean	formula	

Optional

Mandatory

Xor-Group

Or-Group

fm1	





Empty	set	of	

configurations	

Optional

Mandatory

Xor-Group

Or-Group



Dead	feature	

False	optional	

feature	

Optional

Mandatory

Xor-Group

Or-Group



Core	features	

{CarEquipment,	Comfort,	

DrivingAndSafety,	Healthing}	

Optional

Mandatory

Xor-Group

Or-Group



Interactive	

Configuration	

Optional

Mandatory

Xor-Group

Or-Group



	
Feature	Models	and	Automated	Reasoning	

Benavides	et	al.	survey,	2010	

72	



Decision	problems	and	complexity	

•  Validity	of	a	feature	model	

•  Validity	of	a	configuration	

•  Computation	of	dead	and	core	features	

•  Counting	of	the	number	of	valid	configurations	

•  Equivalence	between	two	feature	models	

•  Satisfiability	(SAT)	problem	

–  NP-complete	







A	knowledge	compilation	map	

Adnan	Darwiche	and	Pierre	Marquis 		

Journal	of	Artificial	Intelligence	Research	Volume	17	Issue	1,	July	2002,	Pages	229-264		

(note:	one	of	the	best	paper	I	ever	read)	



Binary Decision Diagrams (Bryant 1986) 

encoding of a truth table. 

x2 

x4 

x3 x3 

x4 x4 x4 

0 0 0 1 0 0 0 0 

x2 

x4 

x3 x3 

x4 x4 x4 

0 1 1 1 0 0 0 1 

x1 0 edge 

1 edge 

from to 

x1 x2 x3 x4 f 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 1 

0 1 0 0 0 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 1 

1 0 0 0 0 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 1 

1 1 0 0 0 

1 1 0 1 0 

1 1 1 0 0 

1 1 1 1 0 



Binary Decision Diagrams 

(after reduction) 

x2 

x3 

x2 

x3 

x4 

0 

x1 

1 

0 edge 

1 edge 



Binary	Decision	Diagrams	(BDDs)	

	

•  Very	efficient	structure	for	most	of	the	

satisfiability	operations	

•  Polynomial	in	time	for	checking	satisfiability	

and	determining	equivalence	between	two	

BDDs	

•  Graph	trasversal	

•  So	great?	

79	



Binary	Decision	Diagrams	(BDDs):	

Theoretical	Problem	

•  The	size	of	the	BDD	is	very	sensitive	to	the	

order	of	the	BDD	variables		

– e.g.	two	equivalent	BDDs	for	the	same	feature	

model		

80	
[Mendonca,	slide]	



Binary	Decision	Diagrams	(BDDs):	

Theoretical	Problem	

•  The	size	of	the	BDD	is	very	sensitive	to	the	

order	of	the	BDD	variables		

– e.g.	two	equivalent	BDDs	for	the	same	feature	

model		

81	
[Mendonca,	slide]	

May	lead	to	

size	explosion	



Binary	Decision	Diagrams	(BDDs):	

Theoretical	Problem	

•  The	size	of	the	BDD	is	very	sensitive	to	the	

order	of	the	BDD	variables		

– e.g.	two	equivalent	BDDs	for	the	same	feature	

model		

82	
[Mendonca,	slide]	

Best	order:	

NP-complete!	



Binary	Decision	Diagrams	(BDDs):	

Practical	Problem	

•  The	size	of	the	BDD	is	very	sensitive	to	the	order	of	

the	BDD	variables.	In	practice:	BDDs	cannot	be	build	for	
feature	models	with	2000+	features		

83	
[Mendonca,	slide]	

Heuristics	

needed	





Satisfiability	(SAT)	solver	

•  A	“SAT	solver”	is	a	program	that	automatically	decides	
whether	a	propositional	logic	formula	is	satisfiable.		

–  If	it	is	satisfiable,	a	SAT	solver	will	produce	an	example	of	a	truth	
assignment	that	satisfies	the	formula.		

•  Basic	idea:	since	all	NP-complete	problems	are	mutually	
reducible:		

– Write	one	really	good	solver	for	NP-complete	problems	(in	fact,	
get	lots	of	people	to	do	it.	Hold	competitions.)		

–  Translate	your	NP-complete	problems	to	that	problem.		

85	



SAT	solver	and	CNF	

•  All	current	fast	SAT	solvers	work	on	CNF	

•  Terminology:		

– A	literal	is	a	propositional	variable	or	its	negation	
(e.g.,	p	or	¬q).	

– A	clause	is	a	disjunction	of	literals	(e.g.,	(p	 	¬q	 	
r	)).	Since	 	is	associative,	we	can	represent	clauses	
as	lists	of	literals.		

•  A	formula	is	in	conjunctive	normal	form	(CNF)	if	it	
is	a	conjunction	of	clauses		

–  e.g.,	(p	 	q	 	¬r)	 	(¬p	 	s	 	t	 	¬u)	
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(Boolean)	Feature	Models	

87	

~	Boolean	formula	

Optional

Mandatory

Xor-Group

Or-Group

fm1	
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φ FM 

A	^	

A	ó	B	^		

C	=>	A	^	

D	=>	A		

Optional

Mandatory

Xor-Group

Or-Group



Consistency	
•  SAT-Solver	

– SAT(FM)	



Core	and	dead	features	

•  Dead	:	SAT(FM	^	F)	

•  Core:	SAT(FM	^	not(F))	



Partial	configuration	

•  SAT(FM	^	PK	^	F)	

•  SAT(FM	^	PK	^	not(F))	



Relationship	between	feature	models	
	

•  Refactoring		
–  Tautology:	(FM1	<=>	FM2)	
=	not	SAT(not	(FM1	<=>	FM2))	





Formal semantics of a language 

–  formal syntax (L) – clearcut syntactic rules 

defining all legal diagrams, a.k.a. syntactic domain 

– semantic domain (S) – a mathematical 

abstraction of the real-world concepts to be 

modelled 

– semantic function (M: L ⟶ S) – clearcut semantic 

rules defining the meaning of all legal diagrams 

[Harel & Rumpe, IEEE Computer, 2004] 
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Optional

Mandatory

Xor-Group

Or-Group
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Hierarchy	+	Variability		

=		

set	of	valid	configurations	

Optional

Mandatory

Xor-Group

Or-Group

{CarEquipment,	Comfort,	

DrivingAndSafety,	

Healthing}	 X

{AirConditioningFrontAndRear,	FrontFogLights,	SAControl}	

{AirConditioningFrontAndRear,	SAControl}	

{AutomaticHeadLights,	AirConditioning,	FrontFogLights}	

{AirConditioningFrontAndRear,	SAControl,	AutomaticHeadLights,	FrontFogLights}	

{FrontFogLights,	AirConditioning}	

{AutomaticHeadLights,	AirConditioningFrontAndRear,	FrontFogLights}	

{FrontFogLights,	AirConditioningFrontAndRear}	

{SAControl,	AirConditioning}	



Quizz	

1)	Give	two	feature	models	with	the	same	

configuration	semantics	but	with	different	

syntax	

2)	Does	it	matter	?	

97	



98	

φ FM 

	

	

	

	

	
	

Feature	Model	Synthesis	Problem	
[Czarnecki	et	al.,	SPLC’07]	

[She	et	al.,	ICSE’11]	

[Andersen	et	al.,	SPLC’12]	

A	^	

A	ó	B	^		

C	=>	A	^	

D	=>	A		



#1	Reverse	Engineering	Scenarios	

•  [Haslinger	et	al.,	WCRE’11],	[Acher	et	al.,	VaMoS’12]	

φ 

V

DAd OT M KAe CP R S

C requires T

Ae requires T

S equals M

V

DAd OT KAe SP R M

C requires T

S equals M

C

0..1



#2	Refactoring	

•  [Alves	et	al.,	GPCE’06],	[Thuem	et	al.,	ICSE’09]	

φ 

V

DAd OT M KAe CP R S

C requires T

Ae requires T

S equals M



Feature	Model	Semantics	

•  As	configuration	semantics	is	not	sufficient…	

•  Ontological	semantics	

– Hierarchy		

– And	feature	groups	

101	



Quizz	(back	to	Feature	Model)	

	

	

Given	a	set	of	configurations	s,	can	we	always	

characterize	s	with	a	feature	diagram	fd	?		

ie	[[fd]]	=	s	

	

In	other	words:	is	the	formalism	of	feature	diagram	expressive	

enough	wrt	Boolean	logic?	 102	



Feature	Diagram	?	

103	

s	=	{{A},	

{A,C,B},	

{B,A},	

{C,D,A},	

{D,A},	

{A,D,B},	

{A,C}	

}	

fm1	=	FM	(A	:	[B]	[C]	[D]	^		

//	B,	C	and	D	are	optional	features	of	A	

	

((B	&	C)	->	!D)	

	

)	



Feature	Diagram	?	

104	



Feature	Model	(bis)	

	

	

s	=	{{A},	{B}}	

	

fd	=	?		

105	



Feature	Model:	Key	Insights 		

•  Semantics	

– Configuration	and	ontological	

•  Syntax	

– Feature	diagram	vs	Feature	Model	

– Feature	diagram	not	expressively	complete	

	

•  Feature	models	are	a	(syntactical)	view	of	a	
propositional	formula			

106	



Feature	model	synthesis	problem	

Input:	φ,	a	propositional	formula	representing	the	dependencies	over	a	set	of	features	F.	

	

Output:	a	maximal	feature	model	with	a	sound	configuration	semantics	

φ	 Feature	model	

synthesis	
FM	

From	logics	to	variability	model		

(there	and	back	again)	Czarnecki	et	al.	SPLC’07	

	Bécan	et	al.	Breathing	Ontological	Knowledge	Into	Feature	Model	

Synthesis.	In	Empirical	Software	Engineering	(ESE)	



(end	of	second	part)	
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Software	Variability	and		

Artificial	Intelligence	

•  Very	large	variability	spaces		

•  AI#2	Statistical,	supervised	machine	

learning	to	(out	of	a	sample):	

– Understand	the	configuration	space			

– Find	the	best	configuration	

– Specialize	the	configuration	space	(e.g.,	by	capturing	

constraints)	

–  In	a	cost-effective	way		

	



AI#2	Statistical,	supervised	machine	learning		

(classification	problem)	



Configuration	space	

o1 : {true, false}

o2 : {true, false}

o3 : [0..10]



Configuration	Space	



How to ensure that all variants 

compile? boot? are secured?  

		

	

	 Sampling
Testing

Learning

o1 : {true, false}
o2 : {true, false}
o3 : [0..10]

o1 = false
o2 = {true, false}
o3 : [2..8]
o3 > 6 => o2 

Enormous configurations space eg Linux has 15000+ options, tri-
state values {y, n, m}; you cannot test all variants 
 

Learning over a small sample 

 



José	A.	Galindo,	Mauricio	Alférez,	Mathieu	Acher,	Benoit	Baudry,	David	Benavides:	

A	variability-based	testing	approach	for	synthesizing	video	sequences.	ISSTA	2014:	



José	A.	Galindo,	Mauricio	Alférez,	Mathieu	Acher,	Benoit	Baudry,	David	Benavides:	

A	variability-based	testing	approach	for	synthesizing	video	sequences.	ISSTA	2014:	

Industrial	video	generator	



Paul	Temple,	José	Angel	Galindo	Duarte,	Mathieu	Acher,	and	Jean-Marc	Jézéquel.	Using	

Machine	Learning	to	Infer	Constraints	for	Product	Lines,	SPLC’16	

Problem:	some	video	variants	are	non-acceptable		

despite	specification	of	numerous	constraints	
(note:	synthesizing	a	variant	takes	30	minutes)	



Problem:	some	video	variants	are	non-acceptable		

despite	specification	of	numerous	constraints	
(note:	synthesizing	a	variant	takes	30	minutes)	

Paul	Temple,	José	Angel	Galindo	Duarte,	Mathieu	Acher,	and	Jean-Marc	Jézéquel.	Using	

Machine	Learning	to	Infer	Constraints	for	Product	Lines,	SPLC’16	



Results	(training	set:	500	video	variants;	validation	

set:	4000	variants)	

Paul	Temple,	José	Angel	Galindo	Duarte,	Mathieu	Acher,	and	Jean-Marc	Jézéquel.	Using	

Machine	Learning	to	Infer	Constraints	for	Product	Lines,	SPLC’16	



Results	(training	set:	500	video	variants;	validation	

set:	4000	variants)	

Paul	Temple,	José	Angel	Galindo	Duarte,	Mathieu	Acher,	and	Jean-Marc	Jézéquel.	Using	

Machine	Learning	to	Infer	Constraints	for	Product	Lines,	SPLC’16	



Results	(training	set:	500	video	variants;	validation	

set:	4000	variants)	

Paul	Temple,	José	Angel	Galindo	Duarte,	Mathieu	Acher,	and	Jean-Marc	Jézéquel.	Using	

Machine	Learning	to	Infer	Constraints	for	Product	Lines,	SPLC’16	



Generalization	of	learning-based	

specialization	

•  Configurations	have	a	label/class	

–  true/false	(video	gen)	or	nbPages={4,5}	(VaryLaTeX);	

without	any	discussion	a	classification	problem	

•  However	there	are	scenarios	in	which	the	

acceptability	is	defined	in	terms	of	performance	

•  Specialization	is	a	classification	problem;	we	boil	

down	to	this	problem	through	a	threshold	over	a	

quantitative	value	eg	execution	time	<	1s	



●  Problem:	configuring	a	system	is	hard		
●  combinatorial	explosion	

●  functional	concerns	and	performance	qualities	

●  users	want	to	have	a	maximum	of	flexibility	and	perform	no	

configuration	error	

●  Configuration	«	envelope	»	
●  Safety	(beware	of	being	too	permissive)	

●  Flexibility	(beware	of	being	too	restrictive)	

●  Solution:	all	option	values	(and	combinations	thereof)	

presented	to	users	should	satisfy	an	“objective”	

	

Automated	Specialization	

x264	--quiet		
					--no-progress		
					--no-asm		
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	



Configuration	space	

o1 : {true, false}

o2 : {true, false}

o3 : [0..10]



Configuration	Space	



c1	

c2	

c3	

Configuration	Space	

c4	

c50000000000000	



c1000229	

c199882	

c399888	

c91989882	

c182	



c10999	

x264	--quiet		

					--no-mbtree=false		

					--no-asm		

					--cfr-ratio	18		

					--b_bias	-50		

					-o	trailer_480p24.x264	

					trailer_2k_480p24.y4m	 x264	--quiet		

					--no-mbtree		

					--no-asm		

					--cfr-ratio	28		

					--b_bias	50		

					-o	trailer_480p24.x264	

					trailer_2k_480p24.y4m	

c2	



c10999	

x264	--quiet		

					--no-mbtree=false		

					--no-asm		

					--cfr-ratio	18		

					--b_bias	-50		

					-o	trailer_480p24.x264	

					trailer_2k_480p24.y4m	 x264	--quiet		

					--no-mbtree		

					--no-asm		

					--cfr-ratio	28		

					--b_bias	50		

					-o	trailer_480p24.x264	

					trailer_2k_480p24.y4m	

c2	

1000s	

1670s	

c3	
x264	--quiet		

					--no-mbtree=false		

						--cfr-ratio	28		

					--b_bias	50		

					-o	trailer_480p24.x264	

					trailer_2k_480p24.y4m	

100s	

I	want	an	execution	time	<	145s		



c10999	

c2	

c3	

100s	
1000s	

1670s	

c67	

17s	

c3	

90s	

I	want	an	execution	time	<	145s		



Automated	specialization	problem:		
synthesizing	constraints	such	that		

each	configuration	meets	an	objective	
(you	have	typically	to	execute	the	configuration	to	know	that)		



320	features	

	

more	variants	than	estimated	

		atoms	in	the	universe	

	

Impossible	to	execute	and	

test	all	configurations	

optional,	independent,	Boolean	

I	want	an	execution	time	<	145s		



I	want	an	execution	time	<	145s		



c1000229	

c199882	

c399888	

c91989882	

c182	

Sampling,	Testing,	and	Learning	



Learning-Based	Specialization	





Problem	reduction:	a	binary	classification	problem	

Learning	approach:	decision	trees	(classification	trees)	



Classification	trees	and	constraints	

Why	decision	trees?	

++	Can	handle	categorical	and	

numerical	values	

++	Constraints	can	be	extracted	into	

logics		

++	Human-readable	constraints	



Classification	trees	and	constraints	



Specialization	of	the	configuration	set	

Sampling
Testing
Learning

Can	discard	lots	of	non-acceptable	configurations		

(safer)	

But	can	also	be	too	restrictive		

(losing	flexibility)		



Specialization	of	the	configuration	set	

Sampling
Testing
Learning

Can	identify	false	positives	or	false	
negatives	(“missing”	flexibility	or	safety)	

	

Ground	

truth	



Sampling
Testing
Learning

Can	identify	false	positives	or	false	
negatives	(“missing”	flexibility	or	safety)	

	

Ground	

truth	



Evaluation	

What	is	the	accuracy	of	our	specialization	method	for	

classifying	configurations?	

What	is	the	precision	and	recall	of	our	specialization	

method	for	classifying	configurations?	

How	safe	and	flexible	are	specialized	configurable	

systems	when	applying	our	method?	

How	effective	is	our	learning	technique	compared	to	

a	non-learning	technique?	



Evaluation	



Independent	variables	

•  Subject	systems	

•  Sampling	size	

•  Performance	objective	

– %	of	non-acceptable	configurations	

•  For	each	subject	system,	we	compute	

numerous	metrics	and	perform	a	sensitivity	

analysis	wrt	sampling	size	and	performance	

objective	



Note:	we	are	currently	further	experimenting	with	new	data	and	algorithms	

paper:	https://hal.archives-ouvertes.fr/hal-01467299	
	



Main	conclusions	

•  High	precision	and	recall	can	be	obtained	with	a	
relative	small	number	of	configurations	with	the	
exception	of	some	"hard"	objective	values	for	
which	the	configurable	system	can	be	seen	as	too	
permissive.	

•  Our	approach	can	be	effective	to	produce	a	safe	
and	flexible	system	with	a	relative	small	number	
of	configurations		

•  Even	and	especially	for	hard	objectives,	our	
specialization	method	significantly	outperforms	
a	non-learning	approach	



Conclusion	
•  Software	variability	everywhere	for	fitting	users’	requirements	

•  Variability	is	complexity	(very	large	configuration	spaces)	

•  AI#1	Abstraction/languages	to	formally	and	efficiently	reason	

about	configuration	spaces	

–  with	SAT/CSP/SMT	solvers		

–  Eg	constrained	sampling		

•  AI#2	Statistical	machine	learning	to	(out	of	a	sample):	

–  Understand	the	configuration	space			

–  Find	the	best	configuration	

–  Specialize	the	configuration	space	(e.g.,	by	capturing	constraints)	

–  In	a	cost-effective	way		

•  Artificial	intelligence	for	fitting	software	variability	

•  Human/machines	interplay	



Context	and	Variability	

Paul	Temple,	Mathieu	Acher,	Jean-Marc	Jézéquel,	and	Olivier	Barais.	Learning-Contextual	

Variability	Models	(2017).	In	IEEE	Software	



Learning		

Contextual	Variability	Models	

Paul	Temple,	Mathieu	Acher,	Jean-Marc	Jézéquel,	and	Olivier	Barais.	Learning-Contextual	

Variability	Models	(2017).	In	IEEE	Software	



Paul	Temple,	Mathieu	Acher,	Jean-Marc	Jézéquel,	and	Olivier	Barais.	Learning-Contextual	

Variability	Models	(2017).	In	IEEE	Software	



Paul	Temple,	Mathieu	Acher,	Battista	Biggio,	Jean-Marc	Jézéquel,	Fabio	Roli:	

Towards	Adversarial	Configurations	for	Software	Product	Lines.	CoRR	abs/1805.12021	(2018)	

		



Software	Variability	and	EJCP		

•  Empirical	Software	Engineering	

– We	aim	to	understand	real-world	variability	(data)	

– We	aim	to	develop	techniques	that	are	effective	on	real-world	

systems	

•  Constraint	Programming				

–  SAT/SMP/CP	solvers	to	reason	about	variability	

•  Coccinelle	and	the	Linux	kernel:	a	challenging	case	study	

for	software	variability		

•  Formal	verification:	many	papers	on	verifying	software	

product	lines	(Thuem	et	al.	ACM	Survey	2014)	

•  Privacy/security:	some	configurations	can	raise	

problems	we	don’t	see	with	default	configurations		



Ongoing	works	



TUXML	
	

Software	Engineering	and	Machine	Learning		

●  Automated	measurements	of	thousands	of	Linux	variants	

●  Learning	with	a	high	precision,	with	a	small	sample	

Linux 
Machine 

Learning 



configuration options: 12K+ 

70K+ configurations (!!) 

Sampling
Testing

Learning

o1 : {true, false}
o2 : {true, false}
o3 : [0..10]

o1 = false
o2 = {true, false}
o3 : [2..8]
o3 > 6 => o2 

Learning-based specialization for  

only keeping Linux kernels that are less than 20Mb 





Performance Prediction 

x264	--no-progress		

					--no-asm		

					--rc-lookahead	60		

					--ref	9		

					-o	trailer_480p24.x264	

					trailer_2k_480p24.y4m	

40 seconds 



Performance Prediction 

x264	--no-mbtree		

					--rc-lookahead	40		

					--ref	9		

					-o	trailer_480p24.x264	

					trailer_2k_480p24.y4m	

10 seconds 



Performance Prediction 

x264	…	

					-o	trailer_480p24.x264	

					trailer_2k_480p24.y4m	

??? seconds 



Performance Prediction 

??? seconds 

x264	--no-mbtree		

					--rc-lookahead	40		

					--ref	9		

					-o	trailer_480p24.x264	

					trailer_2k_480p24.y4m	

Regression problem (linear regression, regression tree, 

random forest, gradient boosting, SVM, etc.)   

Guo et al. ASE 2013, Apel et al. ASE’15, Czarnecki et al. SPLC’15, 

Siegmund et al. FSE’15, Kastner et al. ASE’17, Menzies et al. 

FSE’17, Batory et al. FSE’17 



x264	--no-mbtree		

					--rc-lookahead	40		

					--ref	9		

					-o	trailer_480p24.x264	

					trailer_2k_480p24.y4m	

x264	--no-mbtree		

					--rc-lookahead	40		

					--ref	9		

					-o	football.x264	

					football.y4m	

Input Sensitivity and Transferability of 

Performance Prediction Models 
 

 

What if I change the input video? 
Can I reuse my performance prediction model? 

55 seconds ?? seconds 

? 

(ongoing work) 


