Deductive Program Verification with WhY3

Andrei Paskevich
LRI, Université Paris-Sud - Toccata, Inria Saclay
http://why3.lri.fr/ejcp-2018

ÉJCP 2018

1. A quick look back

Introduction

Software is hard. - Donald Knuth

- 1996: Ariane 5 explosion - an erroneous float-to-int conversion
- 1997: Pathfinder reset loop — priority inversion
- 1999: Mars Climate Orbiter explosion - unit error

Introduction

Software is hard. - Donald Knuth

- 1996: Ariane 5 explosion - an erroneous float-to-int conversion
- 1997: Pathfinder reset loop - priority inversion
- 1999: Mars Climate Orbiter explosion - unit error
- 2006: Debian SSH bug — predictable RNG (fixed in 2008)
- 2012: Heartbleed - buffer over-read (fixed in 2014)
- 1989: Shellshock — insufficient input control (fixed in 2014)

A simple algorithm: Binary search

Goal: find a value in a sorted array.
First algorithm published in 1946.
First correct algorithm published in 1960.

A simple algorithm: Binary search

Goal: find a value in a sorted array.
First algorithm published in 1946.
First correct algorithm published in 1960.
2006: Nearly All Binary Searches and Mergesorts are Broken
(Joshua Bloch, Google, a blog post)
The code in JDK:

$$
\begin{aligned}
& \text { int mid = (low + high) / 2; } \\
& \text { int midVal = a[mid]; }
\end{aligned}
$$

A simple algorithm: Binary search

Goal: find a value in a sorted array.
First algorithm published in 1946.
First correct algorithm published in 1960.
2006: Nearly All Binary Searches and Mergesorts are Broken
(Joshua Bloch, Google, a blog post)
The code in JDK:

$$
\begin{aligned}
& \text { int mid = (low + high) / 2; } \\
& \text { int midVal = a[mid]; }
\end{aligned}
$$

Bug: addition may exceed $2^{31}-1$, the maximum int in Java.
One possible solution:
int mid = low + (high - low) / 2;

Ensure the absence of bugs

Several approaches exist: model checking, abstract interpretation, etc.
In this lecture: deductive verification

1. provide a program with a specification: a mathematical model
2. build a formal proof showing that the code respects the specification

Ensure the absence of bugs

Several approaches exist: model checking, abstract interpretation, etc.
In this lecture: deductive verification

1. provide a program with a specification: a mathematical model
2. build a formal proof showing that the code respects the specification

First proof of a program: Alan Turing, 1949

$$
\begin{aligned}
& u:=1 \\
& \text { for } r=0 \text { to } n-1 \text { do } \\
& \quad v:=u \\
& \text { for } s=1 \text { to } r \text { do } \\
& \quad u:=u+v
\end{aligned}
$$

Ensure the absence of bugs

Several approaches exist: model checking, abstract interpretation, etc.
In this lecture: deductive verification

1. provide a program with a specification: a mathematical model
2. build a formal proof showing that the code respects the specification

First proof of a program: Alan Turing, 1949
First theoretical foundation: Floyd-Hoare logic, 1969

Ensure the absence of bugs

Several approaches exist: model checking, abstract interpretation, etc.
In this lecture: deductive verification

1. provide a program with a specification: a mathematical model
2. build a formal proof showing that the code respects the specification

First proof of a program: Alan Turing, 1949
First theoretical foundation: Floyd-Hoare logic, 1969
First grand success in practice: metro line 14, 1998 tool: Atelier B, proof by refinement

Other major success stories

- Flight control software in A380, 2005
safety proof: the absence of execution errors
tool: Astrée, abstract interpretation
proof of functional properties
tool: Caveat, deductive verification
- Hyper-V - a native hypervisor, 2008 tools: VCC + automated prover Z3, deductive verification
- CompCert — certified C compiler, 2009
tool: Coq, generation of the correct-by-construction code
- seL4 - an OS micro-kernel, 2009
tool: Isabelle/HOL, deductive verification

2. Tool of the day

WHY3 in a nutshell

WHY3 in a nutshell

WHYML, a programming language

- type polymorphism • variants
- limited support for higher order
- pattern matching • exceptions
- break, continue, and return
- ghost code and ghost data (CAV 2014)
- mutable data with controlled aliasing
- contracts - loop and type invariants

WHY3 in a nutshell

WHYML, a programming language

- type polymorphism • variants
- limited support for higher order
- pattern matching • exceptions
- break, continue, and return
- ghost code and ghost data (CAV 2014)
- mutable data with controlled aliasing
- contracts • loop and type invariants

WHYML, a specification language

- polymorphic \& algebraic types
- limited support for higher order
- inductive predicates
(FroCos 2011) (CADE 2013)

WhY3 in a nutshell

WHYML, a programming language

- type polymorphism • variants
- limited support for higher order
- pattern matching • exceptions
- break, continue, and return
- ghost code and ghost data (CAV 2014)
- mutable data with controlled aliasing
- contracts • loop and type invariants

WHY3, a program verification tool

- VC generation using WP or fast WP
- 70+ VC transformations (\approx tactics)
- support for 25+ ATP and ITP systems (Boogie 2011) (ESOP 2013) (VSTTE 2013)

WHYML, a specification language

- polymorphic \& algebraic types
- limited support for higher order
- inductive predicates
(FroCos 2011) (CADE 2013)

Why3 out of a nutshell

Three different ways of using WHY3

- as a logical language
- a convenient front-end to many theorem provers
- as a programming language to prove algorithms
- see examples in our gallery http://toccata.lri.fr/gallery/why3.en.html
- as an intermediate verification language
- Java programs: Krakatoa (Marché Paulin Urbain)
- C programs: Frama-C (Marché Moy)
- Ada programs: SPARK 2014 (Adacore)
- probabilistic programs: EasyCrypt (Barthe et al.)

Example: maximum subarray problem

```
let maximum_subarray (a: array int): int
    ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
    ensures { exists l h: int. 0 <= l <= h <= length a ハ sum a l h = result }
```


Kadane's algorithm

```
(* | | | | | | | | | | | | | | | | | | | | | | | | | | | | *)
(* ......|####### max ########|.............. *)
(* ..........................|### cur #### *)
let maximum_subarray (a: array int): int
    ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
    ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }
=
    let max = ref 0 in
    let cur = ref 0 in
    for i = 0 to length a - 1 do
        cur += a[i];
        if !cur < 0 then cur := 0;
        if !cur > !max then max := !cur
    done;
    !max
```


Kadane's algorithm

```
(* | | | | | | | | | | | | | | | | | | | | | | | | | | | | *)
(* ......|######## max ########|.............. *)
(* ..........................|### cur #### *)
let maximum_subarray (a: array int): int
    ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
    ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }
=
    let max = ref 0 in
    let cur = ref 0 in
    let ghost cl = ref 0 in
    for i = 0 to length a - 1 do
        invariant { forall l: int. 0 <= l <= i -> sum a l i <= !cur }
        invariant { 0 <= !cl <= i /\ sum a !cl i = !cur }
        cur += a[i];
        if !cur < 0 then begin cur := 0; cl := i+1 end;
        if !cur > !max then max := !cur
    done;
    !max
```


Kadane's algorithm

```
(* | | | | | | | | | | | | | | | | | | | | | | | | | | | | *)
(* .....|######## max ########|.............. *)
(* ..........................|### cur #### *)
let maximum_subarray (a: array int): int
    ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
    ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }
=
    let max = ref 0 in
    let cur = ref 0 in
    let ghost cl = ref 0 in
    let ghost lo = ref 0 in
    let ghost hi = ref 0 in
    for i = 0 to length a - 1 do
        invariant { forall l: int. 0 <= l <= i -> sum a l i <= !cur }
        invariant { 0 <= !cl <= i /\ sum a !cl i = !cur }
        invariant { forall l h: int. 0 <= l <= h <= i -> sum a l h <= !max }
        invariant { 0 <= !lo <= !hi <= i /\ sum a !lo !hi = !max }
        cur += a[i];
        if !cur < 0 then begin cur := 0; cl := i+1 end;
        if !cur > !max then begin max := !cur; lo := !cl; hi := i+1 end
    done;
    !max
```


Kadane＇s algorithm

```
use ref.Refint
use array.Array
use array.ArraySum
let maximum_subarray (a: array int): int
    ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
    ensures { exists l h: int. 0 <= l <= h <= length a ハ sum a l h = result }
=
    let max = ref 0 in
    let cur = ref 0 in
    let ghost cl = ref 0 in
    let ghost lo = ref 0 in
    let ghost hi = ref 0 in
    for i = 0 to length a - 1 do
        invariant { forall l: int. 0 <= l <= i -> sum a l i <= !cur }
        invariant { 0 <= !cl <= i ハ sum a !cl i = !cur }
        invariant { forall l h: int. 0 <= l <= h <= i -> sum a l h <= !max }
        invariant { 0 <= !lo <= !hi <= i 八 sum a !lo !hi = !max }
        cur += a[i];
        if !cur < 0 then begin cur := 0; cl := i+1 end;
        if !cur > !max then begin max := !cur; lo := !cl; hi := i+1 end
    done;
    !max
```


Why3 proof session

3. Program correctness

Pure terms

- two data types: mathematical integers and Booleans
- well-typed terms evaluate without errors (no division)
- evaluation of a term does not change the program memory

Program expressions

e	$:=$	skip
	t	do nothing
	$x:=t$	pure term
	$e ; e$	assignment
	let $v=e$ in e	binding
\mid	let $x=$ ref e in e	allocation
	if t then e else e	conditional
	while t do e done	loop

- three types: integers, Booleans, and unit
- references (pointers) are not first-class values
- expressions can allocate and modify memory
- well-typed expressions evaluate without errors

Typed expressions

$$
\begin{array}{ll}
\text { skip } & : \text { unit } \\
t_{\tau} & : \tau \\
x_{\tau}:=t_{\tau} & : \text { unit } \\
e_{\text {unit }} ; e_{\varsigma} & : \varsigma \\
\text { let } v_{\tau}=e_{\tau} \text { in } e_{\varsigma} & \zeta \\
\text { let } x_{\tau}=\text { ref } e_{\tau} \text { in } e_{\varsigma} & : \\
\text { if } t_{\text {bool }} \text { then } e_{\varsigma} \text { else } e_{\varsigma} & : \varsigma \\
\text { while } t_{\text {bool }} \text { do } e_{\text {unit }} \text { done } & : \text { unit }
\end{array}
$$

- $\tau::=$ int \mid bool and $\varsigma::=\tau \mid$ unit
- references (pointers) are not first-class values
- expressions can allocate and modify memory
- well-typed expressions evaluate without errors

Syntactic sugar

$$
\begin{aligned}
x:=e & \equiv \text { let } v=e \text { in } x:=v \\
\text { if } e \text { then } e_{1} \text { else } e_{2} & \equiv \text { let } v=e \text { in if } v \text { then } e_{1} \text { else } e_{2} \\
\text { if } e_{1} \text { then } e_{2} & \equiv \text { if } e_{1} \text { then } e_{2} \text { else skip } \\
e_{1} \& \& e_{2} & \equiv \text { if } e_{1} \text { then } e_{2} \text { else false } \\
e_{1} \| e_{2} & \equiv \text { if } e_{1} \text { then true else } e_{2}
\end{aligned}
$$

Example

```
let sum = ref 1 in
let count = ref 0 in
while sum \leqslant n do
    count := count + 1;
    sum := sum + 2 * count + 1
done;
count
```

What is the result of this expression for a given n ?

Example - ISQRT

```
let sum = ref 1 in
let count = ref 0 in
while sum \leqslant n do
    count := count + 1;
    sum := sum + 2 * count + 1
done;
count
```

What is the result of this expression for a given n ?

Informal specification:

- at the end, count contains the truncated square root of n
- for instance, given $n=42$, the returned value is 6

A statement about program correctness:

$$
\{P\} e\{Q\}
$$

P precondition property
e expression
Q postcondition property

What is the meaning of a Hoare triple?
$\{P\} e\{Q\}$ if we execute e in a state that satisfies P, then the computation either diverges or terminates in a state that satisfies Q

This is partial correctness: we do not prove termination.

Examples

Examples of valid Hoare triples for partial correctness:

- $\{x=1\} x:=x+2\{x=3\}$
- $\{x=y\} x+y\{$ result $=2 * y\}$
- $\{\exists v . x=4 * v\} x+42\{\exists w$. result $=2 * w\}$
- \{true $\}$ while true do skip done $\{$ false $\}$

Examples

Examples of valid Hoare triples for partial correctness:

- $\{x=1\} x:=x+2\{x=3\}$
- $\{x=y\} x+y\{$ result $=2 * y\}$
- $\{\exists v . x=4 * v\} x+42\{\exists w$. result $=2 * w\}$
- $\{$ true $\}$ while true do skip done $\{$ false
- after this loop, everything is trivially verified
- ergo: not proving termination can be fatal

Examples

Examples of valid Hoare triples for partial correctness:

- $\{x=1\} x:=x+2\{x=3\}$
- $\{x=y\} x+y\{$ result $=2 * y\}$
- $\{\exists v . x=4 * v\} x+42\{\exists w$. result $=2 * w\}$
- \{true $\}$ while true do skip done $\{$ false $\}$
- after this loop, everything is trivially verified
- ergo: not proving termination can be fatal

In our square root example:

$$
\{?\} \text { ISQRT \{?\} }
$$

Examples

Examples of valid Hoare triples for partial correctness:

- $\{x=1\} x:=x+2\{x=3\}$
- $\{x=y\} x+y\{$ result $=2 * y\}$
- $\{\exists v . x=4 * v\} x+42\{\exists w$. result $=2 * w\}$
- \{true $\}$ while true do skip done $\{$ false $\}$
- after this loop, everything is trivially verified
- ergo: not proving termination can be fatal

In our square root example:

$$
\{n \geqslant 0\} \operatorname{ISQRT}\{?\}
$$

Examples

Examples of valid Hoare triples for partial correctness:

- $\{x=1\} x:=x+2\{x=3\}$
- $\{x=y\} x+y\{$ result $=2 * y\}$
- $\{\exists v . x=4 * v\} x+42\{\exists w$. result $=2 * w\}$
- $\{$ true $\}$ while true do skip done $\{$ false $\}$
- after this loop, everything is trivially verified
- ergo: not proving termination can be fatal

In our square root example:
$\{n \geqslant 0\}$ ISQRT $\{$ result $*$ result $\leqslant n<($ result +1$) *($ result +1$)\}$
4. Weakest precondition calculus

Weakest preconditions

How can we establish the correctness of a program?
One solution: Edsger Dijkstra, 1975
Predicate transformer WP (e, Q)
e expression
Q postcondition
computes the weakest precondition P such that $\{P\} e\{Q\}$

Definition of WP

$$
\begin{aligned}
\mathrm{WP}(\text { skip }, Q) & \equiv Q \\
\mathrm{WP}(t, Q) & \equiv Q[\text { result } \mapsto t] \\
\mathrm{WP}(x:=t, Q) & \equiv Q[x \mapsto t] \\
\mathrm{WP}\left(e_{1} ; e_{2}, Q\right) & \equiv \mathrm{WP}\left(e_{1}, \mathrm{WP}\left(e_{2}, Q\right)\right) \\
\mathrm{WP}\left(\text { let } v=e_{1} \text { in } e_{2}, Q\right) & \equiv \mathrm{WP}\left(e_{1}, \mathrm{WP}\left(e_{2}, Q\right)[v \mapsto \text { result }]\right) \\
\mathrm{WP}\left(\text { let } x=\text { ref } e_{1} \text { in } e_{2}, Q\right) & \equiv \mathrm{WP}\left(e_{1}, \mathrm{WP}\left(e_{2}, Q\right)[x \mapsto \text { result }]\right) \\
\mathrm{WP}\left(\text { if } t \text { then } e_{1} \text { else } e_{2}, Q\right) & \equiv \begin{array}{l}
\left(t \rightarrow \mathrm{WP}\left(e_{1}, Q\right)\right) \wedge \\
\\
\\
\left(\neg t \rightarrow \mathrm{WP}\left(e_{2}, Q\right)\right)
\end{array}
\end{aligned}
$$

Swimming up the waterfall

$$
\begin{aligned}
& \text { if odd } q \text { then } r:=r+p \text {; } \\
& p:=p+p \text {; } \\
& q:=\text { half } q
\end{aligned}
$$

$$
\begin{aligned}
& \text { if odd } q \text { then } \\
& \qquad r:=r+p \\
& \text { else } \\
& \text { skip; } \\
& p:=p+p ; \\
& q:=\text { half } q
\end{aligned}
$$

if odd q then

$$
r:=r+p
$$

else
skip;
$p:=p+p ;$
$q:=$ half q
$Q[p, q, r]$
if odd q then

$$
r:=r+p
$$

else
skip;

$$
\begin{gathered}
p:=p+p ; \\
Q[p, \text { half } q, r] \\
q:=\text { half } q \\
Q[p, q, r]
\end{gathered}
$$

if odd q then

$$
r:=r+p
$$

else

$$
\begin{gathered}
\text { skip; } \\
Q[p+p, \text { half } q, r] \\
p:=p+p ; \\
Q[p, \text { half } q, r] \\
q:=\text { half } q \\
Q[p, q, r]
\end{gathered}
$$

if odd q then

$$
\begin{aligned}
& \quad r:=r+p \\
& Q[p+p, \text { half } q, r] \\
& \text { else }
\end{aligned}
$$

$$
\begin{gathered}
\text { skip; } \\
Q[p+p, \text { half } q, r] \\
p:=p+p ; \\
Q[p, \text { half } q, r] \\
q:=\text { half } q \\
Q[p, q, r]
\end{gathered}
$$

Swimming up the waterfall

$$
\begin{aligned}
& \text { if odd } q \text { then } \\
& Q[p+p, \text { half } q, r+p] \\
& r:=r+p \\
& Q[p+p, \text { half } q, r] \\
& \text { else } \\
& Q[p+p, \text { half } q, r] \\
& \text { skip; } \\
& Q[p+p, \text { half } q, r] \\
& p:=p+p ; \\
& Q[p, \text { half } q, r] \\
& q:=\text { half } q \\
& Q[p, q, r]
\end{aligned}
$$

Swimming up the waterfall

$$
\begin{aligned}
& \left(\begin{array}{l}
\text { odd } q \rightarrow Q[p+p, \text { half } q, r+p]) \wedge \\
(\neg \text { odd } q \rightarrow Q[p+p, \text { half } q, r]) \\
\text { if odd } q \text { then } \\
Q[p+p, \text { half } q, r+p] \\
r:=r+p \\
Q[p+p, \text { half } q, r] \\
\text { else } \\
Q[p+p, \text { half } q, r] \\
\text { skip; } \\
Q[p+p, \text { half } q, r] \\
p:=p+p ; \\
Q[p, \text { half } q, r] \\
q:=\text { half } q \\
Q[p, q, r]
\end{array}\right.
\end{aligned}
$$

Definition of WP: loops

WP(while t do e done, Q) \equiv
$\exists J$: Prop.
$J \wedge$ $\forall x_{1} \ldots x_{k}$.
$(J \wedge t \rightarrow \mathrm{WP}(e, J)) \wedge$ $(J \wedge \neg t \rightarrow Q)$
some invariant property J that holds at the loop entry and is preserved after a single iteration, is strong enough to prove Q
$x_{1} \ldots x_{k}$ references modified in e

We cannot know the values of the modified references after n iterations

- therefore, we prove preservation and the post for arbitrary values
- the invariant must provide all the needed information about the state

Definition of WP: annotated loops

Finding an appropriate invariant is difficult in the general case

- this is equivalent to constructing a proof of Q by induction

We can ease the task of automated tools by providing annotations:

$$
\begin{array}{ll}
\text { WP }(\text { while } t \text { invariant } J \text { do } e \text { done, } Q) \equiv & \text { the given invariant } J \\
& \text { holds at the loop entry, } \\
\forall x_{1} \ldots x_{k} . & \text { is preserved after } \\
(J \wedge t \rightarrow \mathrm{WP}(e, J)) \wedge & \text { a single iteration, } \\
(J \wedge \neg t \rightarrow Q) & \text { and suffices to prove } Q
\end{array}
$$

$x_{1} \ldots x_{k}$ references modified in e

Russian Peasant Multiplication

$$
\begin{aligned}
& \text { let } p=\text { ref } a \text { in } \\
& \text { let } q=\text { ref } b \text { in } \\
& \text { let } r=\text { ref } 0 \text { in } \\
& \text { while } q>0 \text { invariant } J[p, q, r] \text { do } \\
& \text { if odd } q \text { then } r:=r+p ; \\
& \quad p:=p+p ; \\
& \quad q:=\text { half } q \\
& \text { done } ; \\
& r \\
& \text { result }=a * b
\end{aligned}
$$

Russian Peasant Multiplication

$$
\begin{aligned}
& \text { let } p=\text { ref } a \text { in } \\
& \text { let } q=\text { ref } b \text { in } \\
& \text { let } r=\text { ref } 0 \text { in } \\
& \text { while } q>0 \text { invariant } J[p, q, r] \text { do } \\
& \text { if odd } q \text { then } r:=r+p \text {; } \\
& \quad p:=p+p ; \\
& \quad q:=\text { half } q \\
& \text { done } ; \\
& r=a * b \\
& r
\end{aligned}
$$

Russian Peasant Multiplication

$$
\begin{aligned}
& \text { let } p=\text { ref } a \text { in } \\
& \text { let } q=\text { ref } b \text { in } \\
& \text { let } r=\text { ref } 0 \text { in } \\
& \text { while } q>0 \text { invariant } J[p, q, r] \text { do } \\
& \text { if odd } q \text { then } r:=r+p ; \\
& p:=p+p ; \\
& q:=\text { half } q \\
& J[p, q, r] \\
& \text { done ; } \\
& r=a * b \\
& r
\end{aligned}
$$

Russian Peasant Multiplication

$$
\begin{aligned}
& \text { let } p=\text { ref } a \text { in } \\
& \text { let } q=\text { ref } b \text { in } \\
& \text { let } r=\text { ref } 0 \text { in } \\
& \text { while } q>0 \text { invariant } J[p, q, r] \text { do } \\
& \quad(\text { odd } q \rightarrow J[p+p, \text { half } q, r+p]) \wedge \\
& \quad(\neg \text { odd } q \rightarrow J[p+p, \text { half } q, r]) \\
& \text { if odd } q \text { then } r:=r+p \text {; } \\
& p:=p+p ; \\
& q:=\text { half } q \\
& J[p, q, r] \\
& \text { done ; } \\
& r=a * b \\
& r
\end{aligned}
$$

Russian Peasant Multiplication

$$
\begin{aligned}
& \text { let } p=\text { ref } a \text { in } \\
& \text { let } q=\text { ref } b \text { in } \\
& \text { let } r=\text { ref } 0 \text { in } \\
& J[p, q, r] \wedge \\
& \forall p q r . J[p, q, r] \rightarrow \\
& (q>0 \rightarrow \\
& \quad(\text { odd } q \rightarrow J[p+p, \text { half } q, r+p]) \wedge \\
& (\neg \text { odd } q \rightarrow J[p+p, \text { half } q, r])) \wedge \\
& (q \leqslant 0 \rightarrow \\
& r=a * b) \\
& \text { while } q>0 \text { invariant } J[p, q, r] \text { do } \\
& \text { if odd } q \text { then } r:=r+p ; \\
& p:=p+p ; \\
& \quad q:=\text { half } q \\
& \text { done ; } \\
& r \quad
\end{aligned}
$$

Russian Peasant Multiplication

$$
\begin{aligned}
& J[a, b, 0] \wedge \\
& \forall p q r . J[p, q, r] \rightarrow \\
& \quad(q>0 \rightarrow \\
& \quad(\text { odd } q \rightarrow J[p+p, \text { half } q, r+p]) \wedge \\
& (\neg \text { odd } q \rightarrow J[p+p, \text { half } q, r])) \wedge \\
& (q \leqslant 0 \rightarrow \\
& r=a * b) \\
& \text { let } p=\operatorname{ref} a \text { in } \\
& \text { let } q=\text { ref } b \text { in } \\
& \text { let } r=\text { ref } 0 \text { in } \\
& \text { while } q>0 \text { invariant } J[p, q, r] \text { do } \\
& \quad \text { if odd } q \text { then } r:=r+p ; \\
& p:=p+p ; \\
& q:=\text { half } q \\
& \text { done ; } \\
& r \quad
\end{aligned}
$$

Soundness of WP

Theorem

$$
\text { For any e and } Q \text {, the triple }\{\mathrm{WP}(e, Q)\} e\{Q\} \text { is valid. }
$$

Can be proved by induction on the structure of the program e
w.r.t. some reasonable semantics (axiomatic, operational, etc.)

Corollary
To show that $\{P\} e\{Q\}$ is valid, it suffices to prove $P \rightarrow \mathrm{WP}(e, Q)$.

This is what Why 3 does.
5. Run-time safety

Run-time errors

Some operations can fail if their safety preconditions are not met:

- arithmetic operations: division par zero, overflows, etc.
- memory access: NULL pointers, buffer overruns, etc.
- assertions

Run-time errors

Some operations can fail if their safety preconditions are not met:

- arithmetic operations: division par zero, overflows, etc.
- memory access: NULL pointers, buffer overruns, etc.
- assertions

A correct program must not fail:
$\{P\} e\{Q\}$ if we execute e in a state that satisfies P, then the computation either diverges or terminates normally in a state that satisfies Q

Assertions

A new kind of expression:

The corresponding weakest precondition rule:

$$
\mathrm{WP}(\text { assert } R, Q) \equiv R \wedge Q \equiv R \wedge(R \rightarrow Q)
$$

The second version is useful in practical deductive verification.

Unsafe operations

We could add other partially defined operations to the language:

e	$::=$	
	$t \operatorname{div} t$	
$a[t]$	Euclidean division	

and define the WP rules for them:

$$
\begin{aligned}
\mathrm{WP}\left(t_{1} \operatorname{div} t_{2}, Q\right) & \equiv t_{2} \neq 0 \wedge Q\left[\text { result } \mapsto\left(t_{1} \operatorname{div} t_{2}\right)\right] \\
\mathrm{WP}(a[t], Q) & \equiv 0 \leqslant t<|a| \wedge Q[\text { result } \mapsto a[t]]
\end{aligned}
$$

But we would rather let the programmers do it themselves.

6. Functions and contracts

Subroutines

We may want to delegate some functionality to functions:

$$
\begin{array}{ll}
\text { let } f\left(v_{1}: \tau_{1}\right) \ldots\left(v_{n}: \tau_{n}\right): \varsigma \mathscr{C}=e & \text { defined function } \\
\text { val } f\left(v_{1}: \tau_{1}\right) \ldots\left(v_{n}: \tau_{n}\right): \varsigma \mathscr{C} & \text { abstract function }
\end{array}
$$

Function behaviour is specified with a contract:

$$
\begin{aligned}
\mathscr{C}::= & \text { requires } P & & \text { precondition } \\
& \text { writes } x_{1} \ldots x_{k} & & \text { modified global references } \\
& \text { ensures } Q & & \text { postcondition }
\end{aligned}
$$

Postcondition Q may refer to the initial value of a global reference: x°

$$
\begin{aligned}
& \text { let incr_r (v: int): int writes } x \\
& \text { ensures result }=x^{\circ} \wedge x=x^{\circ}+v \\
& =\text { let } u=x \text { in } x:=u+v ; u
\end{aligned}
$$

Subroutines

We may want to delegate some functionality to functions:

$$
\begin{array}{ll}
\text { let } f\left(v_{1}: \tau_{1}\right) \ldots\left(v_{n}: \tau_{n}\right): \varsigma \mathscr{C}=e & \text { defined function } \\
\text { val } f\left(v_{1}: \tau_{1}\right) \ldots\left(v_{n}: \tau_{n}\right): \varsigma \mathscr{C} & \text { abstract function }
\end{array}
$$

Function behaviour is specified with a contract:

$$
\begin{aligned}
\mathscr{C}::= & \text { requires } P & & \text { precondition } \\
& \text { writes } x_{1} \ldots x_{k} & & \text { modified global references } \\
& \text { ensures } Q & & \text { postcondition }
\end{aligned}
$$

Postcondition Q may refer to the initial value of a global reference: x°

Verification condition (\vec{x} are all global references mentioned in f):

$$
\mathrm{VC}(\text { let } f \ldots) \equiv \forall \vec{x} \vec{V} . P \rightarrow \mathrm{WP}(e, Q)\left[\vec{x}^{\circ} \mapsto \vec{x}\right]
$$

GOSUB

One more expression:

and its weakest precondition rule:

$$
\mathrm{WP}\left(f t_{1} \ldots t_{n}, Q\right) \equiv P_{f}[\vec{v} \mapsto \vec{t}] \wedge
$$

$$
\left(\forall \overrightarrow{\boldsymbol{x}} \forall \text { result. } Q_{f}\left[\vec{v} \mapsto \vec{t}, \vec{x}^{\circ} \mapsto \vec{w}\right] \rightarrow Q\right)[\vec{w} \mapsto \vec{x}]
$$

$P_{f} \quad$ precondition of f
Q_{f} postcondition of f
$\vec{v} \quad$ formal parameters of f
$\overrightarrow{\boldsymbol{x}} \quad$ references modified in f
$\vec{x} \quad$ references used in f
\vec{w} fresh variables

One more expression:

and its weakest precondition rule:

$$
\begin{array}{lll}
\mathrm{WP}\left(f t_{1} \ldots t_{n}, Q\right) \equiv & P_{f}[\vec{v} \mapsto \vec{t}] \wedge \\
& (\forall \overrightarrow{\boldsymbol{x}} \forall \operatorname{result} . \\
& \left.Q_{f}\left[\vec{v} \mapsto \vec{t}, \vec{x}^{\circ} \mapsto \vec{w}\right] \rightarrow Q\right)[\vec{w} \mapsto \vec{x}]
\end{array}
$$

Modular proof: when verifying a function call, we only use the function's contract, not its code.

Examples

```
let max (x y: int) : int
    ensures { result >= x /\ result >= y }
    ensures { result = x \/ result = y }
= if x >= y then x else y
```

val r : ref int $(*$ declare a global reference *)
let incr_r (v: int) : int
requires $\{v>0\}$
writes \{r \}
ensures $\{$ result $=o l d \quad!r / 八!r=o l d!r+v\}$
$=$ let $u=!r$ in
$r:=u+v ;$
u
7. Total correctness: termination

Termination

Problem: prove that the program terminates for every initial state that satisfies the precondition.

It suffices to show that

- every loop makes a finite number of iterations
- recursive function calls cannot go on indefinitely

Solution: prove that every loop iteration and every recursive call decreases a certain value, called variant, with respect to some well-founded order.

For example, for signed integers, a practical well-founded order is

$$
i \prec j=i<j \wedge 0 \leqslant j
$$

Loop termination

A new annotation:

```
| while t invariant J variant t `\prec do e done
```

The corresponding weakest precondition rule:

$$
\begin{aligned}
& \text { WP }(\text { while } t \text { invariant } J \text { variant } s \cdot \prec \text { do } e \text { done, } Q) \equiv \\
& \quad J \wedge \\
& \forall x_{1} \ldots x_{k} . \\
& \quad(J \wedge t \rightarrow \mathrm{WP}(e, J \wedge s \prec w)[w \mapsto s]) \wedge \\
& \quad(J \wedge \neg t \rightarrow Q)
\end{aligned}
$$

$x_{1} \ldots x_{k}$ references modified in e
w a fresh variable (the variant at the start of the iteration)

Termination of recursive functions

A new contract clause:

$$
\text { let rec } \begin{aligned}
f & \left(v_{1}: \tau_{1}\right) \ldots\left(v_{n}: \tau_{n}\right): \varsigma \\
& \text { requires } P_{f} \\
& \text { variant } s \cdot \prec \\
& \text { writes } \overrightarrow{\boldsymbol{x}} \\
& \text { ensures } Q_{f} \\
= & e
\end{aligned}
$$

For each recursive call of f in e :

$$
\begin{aligned}
\mathrm{WP}\left(f t_{1} \ldots t_{n}, Q\right) \equiv & P_{f}[\vec{v} \mapsto \vec{t}] \wedge s[\vec{v} \mapsto \vec{t}] \prec s\left[\vec{x} \mapsto \vec{x}^{\circ}\right] \wedge \\
& \left(\forall \overrightarrow{\boldsymbol{x}} \forall \operatorname{result} . Q_{f}\left[\vec{v} \mapsto \vec{t}, \vec{x}^{\circ} \mapsto \vec{w}\right] \rightarrow Q\right)[\vec{w} \mapsto \vec{x}]
\end{aligned}
$$

$s[\vec{v} \mapsto \vec{t}] \quad$ variant at the call site $\quad \vec{x} \quad$ references used in f $s\left[\vec{x} \mapsto \vec{x}^{\circ}\right] \quad$ variant at the start of $f \quad \vec{W} \quad$ fresh variables

Mutual recursion

Mutually recursive functions must have

- their own variant terms
- a common well-founded order

Thus, if f calls $g t_{1} \ldots t_{n}$, the variant decrease precondition is

$$
s_{g}\left[\vec{v}_{g} \mapsto \vec{t}\right] \prec s\left[\vec{x} \mapsto \vec{x}^{\circ}\right]
$$

\vec{v}_{g} the formal parameters of g
s_{g} the variant of g
8. Exceptions

Exceptions as destinations

Execution of a program can lead to

- divergence - the computation never ends
- total correctness ensures against non-termination

Exceptions as destinations

Execution of a program can lead to

- divergence - the computation never ends
- total correctness ensures against non-termination
- abnormal termination - the computation fails
- partial correctness ensures against run-time errors

Exceptions as destinations

Execution of a program can lead to

- divergence - the computation never ends
- total correctness ensures against non-termination
- abnormal termination - the computation fails
- partial correctness ensures against run-time errors
- normal termination - the computation produces a result
- partial correctness ensures conformance to the contract

Exceptions as destinations

Execution of a program can lead to

- divergence - the computation never ends
- total correctness ensures against non-termination
- abnormal termination - the computation fails
- partial correctness ensures against run-time errors
- normal termination - the computation produces a result
- partial correctness ensures conformance to the contract
- exceptional termination - produces a different kind of result

Exceptions as destinations

Execution of a program can lead to

- divergence - the computation never ends
- total correctness ensures against non-termination
- abnormal termination - the computation fails
- partial correctness ensures against run-time errors
- normal termination - the computation produces a result
- partial correctness ensures conformance to the contract
- exceptional termination - produces a different kind of result
- the contract should also cover exceptional termination

Exceptions as destinations

Execution of a program can lead to

- divergence - the computation never ends
- total correctness ensures against non-termination
- abnormal termination - the computation fails
- partial correctness ensures against run-time errors
- normal termination - the computation produces a result
- partial correctness ensures conformance to the contract
- exceptional termination - produces a different kind of result
- the contract should also cover exceptional termination
- each potential exception E gets its own postcondition Q_{E}

Exceptions as destinations

Execution of a program can lead to

- divergence - the computation never ends
- total correctness ensures against non-termination
- abnormal termination - the computation fails
- partial correctness ensures against run-time errors
- normal termination - the computation produces a result
- partial correctness ensures conformance to the contract
- exceptional termination - produces a different kind of result
- the contract should also cover exceptional termination
- each potential exception E gets its own postcondition Q_{E}
- partial correctness: if E is raised, then Q_{E} holds

Exceptions as destinations

Execution of a program can lead to

- divergence - the computation never ends
- total correctness ensures against non-termination
- abnormal termination - the computation fails
- partial correctness ensures against run-time errors
- normal termination - the computation produces a result
- partial correctness ensures conformance to the contract
- exceptional termination - produces a different kind of result

```
exception Not_found
let binary_search (a: array int) (v: int) : int
    requires { forall i j. 0\leqslanti\leqslantj< length a }->\textrm{a}|\textrm{i}]\leqslanta[j]
    ensures { 0 \leqslant result < length a }\wedge a[result] = v 
    raises { Not_found }->\mathrm{ forall i. 0 < i < length a }->\mathrm{ a[i] }\not=v 
```


Just another semicolon

Our language keeps growing:

e $::=$			
	raise E		
	trye with $\mathrm{E} \rightarrow e$	\quad	raise an exception
:---			
catch an exception			

WP handles two postconditions now:

$$
\mathrm{WP}\left(\text { skip, } Q, Q_{\mathrm{E}}\right) \equiv Q
$$

Just another semicolon

Our language keeps growing:

$e \quad::=$			
	raise E		
	try e with $\mathrm{E} \rightarrow e$	\quad	raise an exception
:---			
catch an exception			

WP handles two postconditions now:

$$
\begin{aligned}
\mathrm{WP}\left(\text { skip, } Q, Q_{\mathrm{E}}\right) & \equiv Q \\
\mathrm{WP}\left(\text { raise } \mathrm{E}, Q, Q_{\mathrm{E}}\right) & \equiv Q_{\mathrm{E}}
\end{aligned}
$$

Just another semicolon

Our language keeps growing:

$e \quad::=$			
	raise E		
	try e with $\mathrm{E} \rightarrow e$	\quad	raise an exception
:---			
catch an exception			

WP handles two postconditions now:

$$
\begin{aligned}
\mathrm{WP}\left(\text { skip, } Q, Q_{E}\right) & \equiv Q \\
\mathrm{WP}\left(\text { raise } \mathrm{E}, Q, Q_{\mathrm{E}}\right) & \equiv Q_{\mathrm{E}} \\
\mathrm{WP}\left(e_{1} ; e_{2}, Q, Q_{\mathrm{E}}\right) & \equiv \mathrm{WP}\left(e_{1}, \mathrm{WP}\left(e_{2}, Q, Q_{\mathrm{E}}\right), Q_{E}\right)
\end{aligned}
$$

Just another semicolon

Our language keeps growing:

e $::=$			
	raise E		
	trye with $\mathrm{E} \rightarrow e$	\quad	raise an exception
:---			
catch an exception			

WP handles two postconditions now:

$$
\begin{aligned}
\mathrm{WP}\left(\text { skip }, Q, Q_{\mathrm{E}}\right) & \equiv Q \\
\mathrm{WP}\left(\text { raise } \mathrm{E}, Q, Q_{\mathrm{E}}\right) & \equiv Q_{\mathrm{E}} \\
\mathrm{WP}\left(e_{1} ; e_{2}, Q, Q_{\mathrm{E}}\right) & \equiv \mathrm{WP}\left(e_{1}, \mathrm{WP}\left(e_{2}, Q, Q_{\mathrm{E}}\right), Q_{\mathrm{E}}\right) \\
\mathrm{WP}\left(\text { try } e_{1} \text { with } \mathrm{E} \rightarrow e_{2}, Q, Q_{\mathrm{E}}\right) & \equiv \mathrm{WP}\left(e_{1}, Q, \mathrm{WP}\left(e_{2}, Q, Q_{\mathrm{E}}\right)\right)
\end{aligned}
$$

Just another let-in

Exceptions can carry data:

Still, all needed mechanisms are already in WP:

$$
\begin{aligned}
& \mathrm{WP}\left(t, Q, Q_{\mathrm{E}}\right) \equiv Q[\text { result } \mapsto t] \\
& \mathrm{WP}\left(\text { raise } \mathrm{E} t, Q, Q_{\mathrm{E}}\right) \equiv Q_{\mathrm{E}}[\text { result } \mapsto t] \\
& \mathrm{WP}\left(\text { let } v=e_{1} \text { in } e_{2}, Q, Q_{\mathrm{E}}\right) \equiv \\
& \operatorname{WP}\left(e_{1}, \operatorname{WP}\left(e_{2}, Q, Q_{\mathrm{E}}\right)[v \mapsto \operatorname{result}], Q_{\mathrm{E}}\right)
\end{aligned}
$$

WP(try e_{1} with E $\left.v \rightarrow e_{2}, Q, Q_{E}\right) \equiv$

$$
\mathrm{WP}\left(e_{1}, Q, \mathrm{WP}\left(e_{2}, Q, Q_{\mathrm{E}}\right)[v \mapsto \text { result }]\right)
$$

Functions with exceptions

A new contract clause:

$$
\text { let } \begin{aligned}
f & \left(v_{1}: \tau_{1}\right) \ldots\left(v_{n}: \tau_{n}\right): \varsigma \\
& \text { requires } P_{f} \\
& \text { writes } \overrightarrow{\boldsymbol{x}} \\
& \text { ensures } Q_{f} \\
& \text { raises } \mathrm{E} \rightarrow Q_{\mathrm{E} f} \\
= & e
\end{aligned}
$$

Verification condition for the function definition:

$$
\mathrm{VC}(\text { let } f \ldots) \equiv \forall \vec{x} \vec{v} \cdot P_{f} \rightarrow \mathrm{WP}\left(e, Q_{f}, Q_{\mathrm{E} f}\right)\left[\vec{x}^{\circ} \mapsto \vec{x}\right]
$$

Weakest precondition rule for the function call:

$$
\begin{aligned}
& \mathrm{WP}\left(f t_{1} \ldots t_{n}, Q, Q_{\mathrm{E}}\right) \equiv P_{f}[\vec{v} \mapsto \vec{t}] \wedge \\
&\left(\forall \overrightarrow{\boldsymbol{x}} \forall \text { result. } Q_{f}\left[\vec{v} \mapsto \vec{t}, \vec{x}^{\circ} \mapsto \vec{w}\right] \rightarrow Q\right)[\vec{w} \mapsto \vec{x}] \wedge \\
&\left(\forall \overrightarrow{\boldsymbol{x}} \forall \text { result. } Q_{\mathrm{Ef}}\left[\vec{v} \mapsto \vec{t}, \vec{x}^{\circ} \mapsto \vec{w}\right] \rightarrow Q_{\mathrm{E}}\right)[\vec{w} \mapsto \vec{x}]
\end{aligned}
$$

9. WhyML types

WhYML types

WhYML supports most of the OCaml types:

- polymorphic types
type set 'a
- tuples:
type poly_pair 'a = ('a, 'a)
- records:
type complex = \{ re : real; im : real \}
- variants (sum types):
type list 'a = Cons 'a (list 'a) | Nil

Algebraic types

To handle algebraic types (records, variants):

- access to record fields:
let get_real (c : complex) = c.re
let use_imagination (c : complex) = im c
- record updates:
let conjugate (c : complex) = \{ c with im = - c.im \}
- pattern matching (no when clauses):
let rec length (l : list 'a) : int variant \{ l \} = match l with
| Cons _ ll -> 1 + length ll
| Nil -> 0
end

Abstract types

Abstract types must be axiomatized:

```
theory Map
    type map 'a 'b
    function ([]) (a: map 'a 'b) (i: 'a): 'b
    function ([<-]) (a: map 'a 'b) (i: 'a) (v: 'b): map 'a 'b
    axiom Select_eq:
        forall m: map 'a 'b, k1 k2: 'a, v: 'b.
            k1 = k2 -> m[k1 <- v][k2] = v
    axiom Select_neq:
    forall m: map 'a 'b, k1 k2: 'a, v: 'b.
        k1 <> k2 -> m[k1 <- v][k2] = m[k2]
end
```


Abstract types (cont.)

Abstract types must be axiomatized:

```
theory Set
    type set 'a
    predicate mem 'a (set 'a)
    predicate (==) (s1 s2: set 'a) =
    forall x: 'a. mem x s1 <-> mem x s2
    axiom extensionality:
    forall s1 s2: set 'a. s1 == s2 -> s1 = s2
    predicate subset (s1 s2: set 'a) =
    forall x: 'a. mem x s1 -> mem x s2
    lemma subset_refl: forall s: set 'a. subset s s
    constant empty : set 'a
    axiom empty_def: forall x: 'a. not (mem x empty)
```


Logical language of WHYML

- the same types are available in the logical language
- match-with-end, if-then-else, let-in are accepted both in terms and formulas
- functions et predicates can be defined recursively:

```
predicate mem (x: 'a) (l: list 'a) = match l with
    Cons y r -> x = y \/ mem x r | Nil -> false end
```

no variants, WHY3 requires structural decrease

- inductive predicates (useful for transitive closures):

```
inductive sorted (l: list int) =
    | SortedNil: sorted Nil
    | SortedOne: forall x: int. sorted (Cons x Nil)
    | SortedTwo: forall x y: int, l: list int.
        x <= y -> sorted (Cons y l) ->
        sorted (Cons x (Cons y l))
```


10. Ghost code

Ghost code: example

Compute a Fibonacci number using a recursive function in $O(n)$:

```
let rec aux (a b n: int): int
    requires { 0 <= n }
    requires {
    ensures {
    variant { n }
= if n = 0 then a else aux b (a+b) (n-1)
let fib_rec (n: int): int
    requires { 0 <= n }
    ensures { result = fib n }
= aux 0 1 n
(* fib_rec 5 = aux 0 1 5 = aux 1 1 4 = aux 1 2 3 =
    aux 2 3 2 = aux 3 5 1 = aux 5 8 0 = 5 *)
```


Ghost code: example

Compute a Fibonacci number using a recursive function in $O(n)$:

```
let rec aux (a b n: int): int
    requires { 0 <= n }
    requires { exists k. 0 <= k /\ a = fib k /\ b = fib (k+1) }
    ensures { exists k. 0 <= k /\ a = fib k /\ b = fib (k+1) /\
                                    result = fib (k+n) }
    variant { n }
= if n = 0 then a else aux b (a+b) (n-1)
let fib_rec (n: int): int
    requires { 0 <= n }
    ensures { result = fib n }
= aux 0 1 n
(* fib_rec 5 = aux 0 1 5 = aux 1 1 4 = aux 1 2 3 =
    aux 2 3 2 = aux 3 5 1 = aux 5 8 0 = 5 *)
```


Ghost code: example

Instead of an existential we can use a ghost parameter:

```
let rec aux (a b n: int) (ghost k: int): int
        requires { 0 <= n }
        requires { 0 <= k /\ a = fib k ハ\ b = fib (k+1) }
        ensures { result = fib (k+n) }
    variant { n }
= if n = 0 then a else aux b (a+b) (n-1) (k+1)
let fib_rec (n: int): int
    requires { 0 <= n }
    ensures { result = fib n }
= aux 0 1 n 0
```


The spirit of ghost code

Ghost code is used to facilitate specification and proof
\Rightarrow the principle of non-interference:
We must be able to eliminate the ghost code from a program without changing its outcome

The spirit of ghost code

Ghost code is used to facilitate specification and proof
\Rightarrow the principle of non-interference:

> We must be able to eliminate the ghost code from a program without changing its outcome

Consequently:

- visible code cannot read ghost data
- if k is ghost, then $(k+1)$ is ghost, too

The spirit of ghost code

Ghost code is used to facilitate specification and proof
\Rightarrow the principle of non-interference:

> We must be able to eliminate the ghost code from a program without changing its outcome

Consequently:

- visible code cannot read ghost data
- if k is ghost, then $(k+1)$ is ghost, too
- ghost code cannot modify visible data
- if r is a visible reference, then $r:=$ ghost k is forbidden

The spirit of ghost code

Ghost code is used to facilitate specification and proof
\Rightarrow the principle of non-interference:

> We must be able to eliminate the ghost code from a program without changing its outcome

Consequently:

- visible code cannot read ghost data
- if k is ghost, then $(k+1)$ is ghost, too
- ghost code cannot modify visible data
- if r is a visible reference, then $r:=$ ghost k is forbidden
- ghost code cannot alter the control flow of visible code
- if c is ghost, then if c then ... and while c do \ldots done are ghost

The spirit of ghost code

Ghost code is used to facilitate specification and proof
\Rightarrow the principle of non-interference:

> We must be able to eliminate the ghost code from a program without changing its outcome

Consequently:

- visible code cannot read ghost data
- if k is ghost, then $(k+1)$ is ghost, too
- ghost code cannot modify visible data
- if r is a visible reference, then $r:=$ ghost k is forbidden
- ghost code cannot alter the control flow of visible code
- if c is ghost, then if c then ... and while c do \ldots done are ghost
- ghost code cannot diverge
- we can prove while true do skip done ; assert false

Ghost code in WhYML

Can be declared ghost:

- function parameters

```
val aux (a b n: int) (ghost k: int): int
```


Ghost code in WhYML

Can be declared ghost:

- function parameters

```
val aux (a b n: int) (ghost k: int): int
```

- record fields and variant fields

```
type queue 'a = { head: list 'a; (* get from head *)
                        tail: list 'a; (* add to tail *)
    ghost elts: list 'a; (* logical view *) }
invariant { elts = head ++ reverse tail }
```


Ghost code in WhYML

Can be declared ghost:

- function parameters

```
val aux (a b n: int) (ghost k: int): int
```

- record fields and variant fields

```
type queue 'a = { head: list 'a; (* get from head *)
        tail: list 'a; (* add to tail *)
        ghost elts: list 'a; (* logical view *) }
invariant { elts = head ++ reverse tail }
```

- local variables and functions
let ghost $x=q u . e l t s$ in ...
let ghost rev_elts qu = qu.tail ++ reverse qu.head

Ghost code in WhYML

Can be declared ghost:

- function parameters

```
val aux (a b n: int) (ghost k: int): int
```

- record fields and variant fields

```
type queue 'a = { head: list 'a; (* get from head *)
        tail: list 'a; (* add to tail *)
        ghost elts: list 'a; (* logical view *) }
invariant { elts = head ++ reverse tail }
```

- local variables and functions
let ghost $x=q u . e l t s$ in ...
let ghost rev_elts qu = qu.tail ++ reverse qu.head
- program expressions
let $x=$ ghost qu.elts in ...

How it works?

The visible world and the ghost world are built from the same bricks.
Explicitly annotating every ghost expression would be impractical.

How it works?

The visible world and the ghost world are built from the same bricks.
Explicitly annotating every ghost expression would be impractical.
Solution: Tweak the type system and use inference (of course!)

$$
\Gamma \vdash e: \varsigma
$$

ς - int, bool, unit (also: lists, arrays, etc.)

How it works?

The visible world and the ghost world are built from the same bricks.
Explicitly annotating every ghost expression would be impractical.

Solution: Tweak the type system and use inference (of course!)

$$
\Gamma \vdash e: \varsigma \cdot \varepsilon
$$

ς — int, bool, unit (also: lists, arrays, etc.)
ε - potential side effects modified references $\quad r:=\ldots$, let $r=$ ref \ldots in raised exceptions divergence raise E, try ... with E \rightarrow unproved termination

How it works?

The visible world and the ghost world are built from the same bricks.

Explicitly annotating every ghost expression would be impractical.
Solution: Tweak the type system and use inference (of course!)

$$
\Gamma \vdash e: \varsigma \cdot \varepsilon \cdot \mathfrak{g}
$$

ς - int, bool, unit (also: lists, arrays, etc.)
ε - potential side effects modified references $\quad r:=\ldots$, let $r=r e f \ldots$ in raised exceptions raise E, try ... with E \rightarrow divergence unproved termination
\mathfrak{g} - is the expression visible or ghost?

How it works?

The visible world and the ghost world are built from the same bricks.

Explicitly annotating every ghost expression would be impractical.
Solution: Tweak the type system and use inference (of course!)

$$
\Gamma \vdash e: \varsigma \cdot \varepsilon \cdot \mathfrak{g} \cdot \mathfrak{m}
$$

ς - int, bool, unit (also: lists, arrays, etc.)
ε - potential side effects modified references $\quad r:=\ldots$, let $r=r e f \ldots$ in raised exceptions raise E, try ... with E \rightarrow divergence
unproved termination
\mathfrak{g} - is the expression visible or ghost?
\mathfrak{m} - is the expression's result visible or ghost?

Who's ghost and who's not?

Any variable or reference is considered ghost

- if explicitly declared ghost:
let ghost $v^{\mathfrak{g}}=6 * 6$ in ...
- if initialised with a ghost value: let $r^{\mathfrak{g}}=r e f\left(v^{\mathfrak{g}}+6\right)$ in \ldots
- if declared inside a ghost block: ghost (let $x^{\mathfrak{g}}=42$ in ...)

Who's ghost and who's not?

Any variable or reference is considered ghost

- if explicitly declared ghost:
let ghost $\mathrm{v}^{\mathfrak{g}}=6 * 6$ in \ldots
- if initialised with a ghost value: let $r^{\mathfrak{g}}=\operatorname{ref}\left(v^{\mathfrak{g}}+6\right)$ in \ldots
- if declared inside a ghost block: ghost (let $x^{\mathfrak{g}}=42$ in ...)

1. term t is ghost $\equiv t$ contains a ghost variable or reference

Who's ghost and who's not?

Any variable or reference is considered ghost

- if explicitly declared ghost:

```
let ghost v}\mp@subsup{v}{}{\mathfrak{g}}=6*6 in..
let }\mp@subsup{r}{}{\mathfrak{g}}=\operatorname{ref (\mp@subsup{v}{}{\mathfrak{g}}+6) in ...
```

- if declared inside a ghost block: ghost (let $x^{\mathfrak{g}}=42$ in ...)

1. term t is ghost $\equiv t$ contains a ghost variable or reference
2. $r:=t$ is ghost $\equiv r$ is a ghost reference (Q: what about t ?)

Who's ghost and who's not?

Any variable or reference is considered ghost

- if explicitly declared ghost:

```
let ghost v}\mp@subsup{v}{}{\mathfrak{g}}=6*6 in..
let }\mp@subsup{r}{}{\mathfrak{g}}=\operatorname{ref (\mp@subsup{v}{}{\mathfrak{g}}+6) in ...
```

- if declared inside a ghost block: ghost (let $x^{\mathfrak{g}}=42$ in ...)

1. term t is ghost $\equiv t$ contains a ghost variable or reference
2. $r:=t$ is ghost $\equiv r$ is a ghost reference (Q: what about t ?)
3. skip is not ghost

Who's ghost and who's not?

Any variable or reference is considered ghost

- if explicitly declared ghost:

```
let ghost v}\mp@subsup{v}{}{\mathfrak{g}}=6*6 in..
let }\mp@subsup{r}{}{\mathfrak{g}}=\operatorname{ref}(\mp@subsup{v}{}{\mathfrak{g}}+6) in ..
```

- if declared inside a ghost block: ghost (let $x^{\mathfrak{g}}=42$ in ...)

1. term t is ghost $\equiv t$ contains a ghost variable or reference
2. $r:=t$ is ghost $\equiv r$ is a ghost reference (Q: what about t ?)
3. skip is not ghost
4. raise E is not ghost

Who's ghost and who's not?

Any variable or reference is considered ghost

- if explicitly declared ghost:

```
let ghost \mp@subsup{v}{}{\mathfrak{g}}=6*6 in...
```

- if initialised with a ghost value: let $r^{\mathfrak{g}}=\operatorname{ref}\left(v^{\mathfrak{g}}+6\right)$ in \ldots
- if declared inside a ghost block: ghost (let $x^{\mathfrak{g}}=42$ in ...)

1. term t is ghost $\equiv t$ contains a ghost variable or reference
2. $r:=t$ is ghost $\equiv r$ is a ghost reference (Q: what about t ?)
3. skip is not ghost
4. raise E is not ghost
unless we pass a ghost value with E : raise $E v^{\mathfrak{g}}$

Who's ghost and who's not?

Any variable or reference is considered ghost

- if explicitly declared ghost:
- if initialised with a ghost value:
- if declared inside a ghost block: ghost (let $x^{\mathfrak{g}}=42$ in ...)

1. term t is ghost $\equiv t$ contains a ghost variable or reference
2. $r:=t$ is ghost $\equiv r$ is a ghost reference (Q: what about t ?)
3. skip is not ghost
4. raise E is not ghost
unless we pass a ghost value with E : raise $E v^{\mathfrak{g}}$
unless E is expected to carry ghost values: exception E (ghost int)

Who's ghost and who's not?

An expression e has a visible effect iff

- e modifies a visible reference
- e diverges (= not proved to terminate)
- e is not ghost and raises an exception

Who's ghost and who's not?

An expression e has a visible effect iff

- e modifies a visible reference
- e diverges (= not proved to terminate)
- e is not ghost and raises an exception

5. $e_{1} ; e_{2} /$ let $v=e_{1}$ in $e_{2} /$ let $v=$ ref e_{1} in e_{2} is ghost \equiv

- e_{2} is ghost and e_{1} has no visible effects (Q: what if it has some?)
- e_{1} or e_{2} is ghost and raises an exception (Q: why does it matter?)

Who's ghost and who's not?

An expression e has a visible effect iff

- e modifies a visible reference
- e diverges (= not proved to terminate)
- e is not ghost and raises an exception

5. $e_{1} ; e_{2} /$ let $v=e_{1}$ in $e_{2} /$ let $v=$ ref e_{1} in e_{2} is ghost \equiv

- e_{2} is ghost and e_{1} has no visible effects (Q: what if it has some?)
- e_{1} or e_{2} is ghost and raises an exception (Q: why does it matter?)

6. try e_{1} with $E \rightarrow e_{2} /$ try e_{1} with $E v \rightarrow e_{2}$ is ghost \equiv

- e_{1} is ghost
- e_{2} is ghost and raises an exception

Who's ghost and who's not?

An expression e has a visible effect iff

- e modifies a visible reference
- e diverges (= not proved to terminate)
- e is not ghost and raises an exception

7. if t then e_{1} else e_{2} is ghost \equiv

- t is ghost (unless e_{1} or e_{2} is assert false)
- e_{1} is ghost and e_{2} has no visible effects
- e_{2} is ghost and e_{1} has no visible effects
- e_{1} or e_{2} is ghost and raises an exception

Who's ghost and who's not?

An expression e has a visible effect iff

- e modifies a visible reference
- e diverges (= not proved to terminate)
- e is not ghost and raises an exception

7. if t then e_{1} else e_{2} is ghost \equiv

- t is ghost (unless e_{1} or e_{2} is assert false)
- e_{1} is ghost and e_{2} has no visible effects
- e_{2} is ghost and e_{1} has no visible effects
- e_{1} or e_{2} is ghost and raises an exception

8. while t do e done is ghost $\equiv t$ or e is ghost

Who's ghost and who's not?

9. function call $f t_{1} \ldots t_{n}$ is ghost \equiv

- function f is ghost or some argument t_{i} is ghost
unless f expects a ghost parameter at that position

Who's ghost and who's not?

9. function call $f t_{1} \ldots t_{n}$ is ghost \equiv

- function f is ghost or some argument t_{i} is ghost unless f expects a ghost parameter at that position

When typechecking a function definition

- we expect the ghost parameters to be explicitly specified
- then the ghost status of every subexpression can be inferred

Who's ghost and who's not?

9. function call $f t_{1} \ldots t_{n}$ is ghost \equiv

- function f is ghost or some argument t_{i} is ghost unless f expects a ghost parameter at that position

When typechecking a function definition

- we expect the ghost parameters to be explicitly specified
- then the ghost status of every subexpression can be inferred

Erasure $\lceil\cdot\rceil$ erases ghost data and turns ghost code into skip.
Theorem*: Erasure preserves the visible program semantics.

Lemma functions

General idea: a function $f \vec{x}$ requires P_{f} ensures Q_{f} that

- returns unit
- has no side effects
- terminates
provides a constructive proof of $\forall \vec{x} . P_{f} \rightarrow Q_{f}$
\Rightarrow a pure recursive function simulates a proof by induction

Lemma functions

General idea: a function $f \vec{x}$ requires P_{f} ensures Q_{f} that

- returns unit
- has no side effects
- terminates
provides a constructive proof of $\forall \vec{x} . P_{f} \rightarrow Q_{f}$
\Rightarrow a pure recursive function simulates a proof by induction

```
function rev_append (l r: list 'a): list 'a = match l with
    | Cons a ll -> rev_append ll (Cons a r) | Nil -> r end
let rec lemma length_rev_append (l r: list 'a) variant {l}
    ensures { length (rev_append l r) = length l + length r }
=
    match l with Cons a ll -> length_rev_append ll (Cons a r)
    | Nil -> () end
```


Lemma functions

```
function rev_append (l r: list 'a): list 'a = match l with
    | Cons a ll -> rev_append ll (Cons a r) | Nil -> r end
let rec lemma length_rev_append (l r: list 'a) variant {l}
    ensures { length (rev_append l r) = length l + length r }
=
    match l with Cons a ll -> length_rev_append ll (Cons a r)
        | Nil -> () end
```

- by the postcondition of the recursive call:

```
length (rev_append ll (Cons a r)) = length ll + length (Cons a r)
```

- by definition of rev_append:

```
rev_append (Cons a ll) r = rev_append ll (Cons a r)
```

- by definition of length:

```
length (Cons a ll) + length r = length ll + length (Cons a r)
```


11. Mutable data

Records with mutable fields

```
module Ref
    type ref 'a = { mutable contents : 'a } (* as in OCaml *)
    function (!) (r: ref 'a) : 'a = r.contents
    let ref (v: 'a) = { contents = v }
    let (!) (r:ref 'a) = r.contents
    let (:=) (r:ref 'a) (v:'a) = r.contents <- v
end
```


Records with mutable fields

```
module Ref
    type ref 'a = \{ mutable contents : 'a \} (* as in OCaml *)
    function (!) (r: ref 'a) : 'a = r.contents
    let \(\operatorname{ref}(v: \quad\) 'a) \(=\{\) contents \(=v\}\)
    let (!) (r:ref 'a) = r.contents
    let (:=) (r:ref 'a) (v:'a) = r.contents <- v
end
```

- can be passed between functions as arguments and return values

Records with mutable fields

```
module Ref
    type ref 'a = { mutable contents : 'a } (* as in OCaml *)
    function (!) (r: ref 'a) : 'a = r.contents
    let ref (v: 'a) = { contents = v }
    let (!) (r:ref 'a) = r.contents
    let (:=) (r:ref 'a) (v:'a) = r.contents <- v
end
```

- can be passed between functions as arguments and return values
- can be created locally or declared globally
- let $r=$ ref 0 in while ! $r<42$ do $r:=$!r + 1 done
- val gr : ref int

Records with mutable fields

```
module Ref
    type ref 'a = { mutable contents : 'a } (* as in OCaml *)
    function (!) (r: ref 'a) : 'a = r.contents
    let ref (v: 'a) = { contents = v }
    let (!) (r:ref 'a) = r.contents
    let (:=) (r:ref 'a) (v:'a) = r.contents <- v
end
```

- can be passed between functions as arguments and return values
- can be created locally or declared globally
- let $r=$ ref 0 in while ! $r<42$ do $r:=$! +1 done
- val gr : ref int
- can hold ghost data
- let ghost r := ref 42 in ... ghost (r := -!r) ...

Records with mutable fields

```
module Ref
    type ref 'a = { mutable contents : 'a } (* as in OCaml *)
    function (!) (r: ref 'a) : 'a = r.contents
    let ref (v: 'a) = { contents = v }
    let (!) (r:ref 'a) = r.contents
    let (:=) (r:ref 'a) (v:'a) = r.contents <- v
end
```

- can be passed between functions as arguments and return values
- can be created locally or declared globally
- let $r=$ ref 0 in while ! <42 do $r:=$! $r+1$ done
- val gr : ref int
- can hold ghost data
- let ghost r := ref 42 in ... ghost (r := -!r) ...
- cannot be stored in recursive structures: no list (ref 'a)

Records with mutable fields

```
module Ref
    type ref 'a = \{ mutable contents : 'a \} (* as in OCaml *)
    function (!) (r: ref 'a) : 'a = r.contents
    let ref (v: 'a) \(=\) \{ contents \(=v\) \}
    let (!) (r:ref 'a) = r.contents
    let (:=) (r:ref 'a) (v:'a) = r.contents <- v
end
```

- can be passed between functions as arguments and return values
- can be created locally or declared globally
- let $r=r e f 0$ in while $!r<42$ do r := !r + 1 done
- val gr : ref int
- can hold ghost data
- let ghost r := ref 42 in ... ghost (r := -!r) ...
- cannot be stored in recursive structures: no list (ref 'a)
- cannot be stored under abstract types: no set (ref 'a)

The problem of alias

```
let double_incr (s1 s2: ref int): unit writes {s1,s2}
    ensures { !s1 = 1 + old !s1 /\ !s2 = 2 + old !s2 }
= s1 := 1 + !s1; s2 := 2 + !s2
let wrong () =
    let s = ref 0 in
    double_incr s s; (* write/write alias *)
    assert { !s = 1 ハ !s = 2 } (* in fact, !s = 3 *)
```

```
let double_incr (s1 s2: ref int): unit writes {s1,s2}
    ensures { !s1 = 1 + old !s1 /\ !s2 = 2 + old !s2 }
= s1 := 1 + !s1; s2 := 2 + !s2
let wrong () =
    let s = ref 0 in
    double_incr s s; (* write/write alias *)
    assert { !s = 1 ハ !s = 2 } (* in fact, !s = 3 *)
```

```
val g : ref int
```

let set_from_g (r: ref int): unit writes $\{r\}$
ensures $\{!r=!g+1\}$
$=r:=!g+1$
let wrong () =
set_from_g g; (* read/write alias *)
assert $\{!\mathrm{g}=\mathrm{!} \mathrm{~g}+1\} \quad(*$ contradiction $*)$

The standard WP rule for assignment:

$$
\mathrm{WP}(x:=42, Q[x, y, z])=Q[42, y, z]
$$

But if x and z are two names for the same reference

$$
\mathrm{WP}(x:=42, Q[x, y, z]) \quad \text { should be } \quad Q[42, y, 42]
$$

Problem: Know, statically, when two values are aliased.

The standard WP rule for assignment:

$$
\mathrm{WP}(x:=42, Q[x, y, z])=Q[42, y, z]
$$

But if x and z are two names for the same reference

$$
\mathrm{WP}(x:=42, Q[x, y, z]) \quad \text { should be } \quad Q[42, y, 42]
$$

Problem: Know, statically, when two values are aliased.
Solution: Tweak the type system and use inference (of course!)

WP with aliases

Every mutable type carries an invisible identity token - a region:

$$
x: \operatorname{ref} \rho \text { int } \quad y: \operatorname{ref} \pi \text { int } \quad z: \operatorname{ref} \rho \text { int }
$$

WP with aliases

Every mutable type carries an invisible identity token - a region:

$$
x: \operatorname{ref} \rho \text { int } \quad y: \operatorname{ref} \pi \text { int } \quad z: \operatorname{ref} \rho \text { int }
$$

Now, some programs typecheck no more: if ... then x else y : ?

WP with aliases

Every mutable type carries an invisible identity token - a region:

$$
x: \operatorname{ref} \rho \text { int } \quad y: \operatorname{ref} \pi \text { int } \quad z: \text { ref } \rho \text { int }
$$

Now, some programs typecheck no more: if ... then x else y : ?
...fortunately: $\quad \mathrm{WP}($ let $r=x$ or maybe y in $r:=42, Q[x, y, z])=$?

WP with aliases

Every mutable type carries an invisible identity token - a region:

$$
x: \operatorname{ref} \rho \text { int } \quad y: \operatorname{ref} \pi \text { int } \quad z: \text { ref } \rho \text { int }
$$

Now, some programs typecheck no more: if ... then x else y : ?
...fortunately: $\quad \mathrm{WP}($ let $r=x$ or maybe y in $r:=42, Q[x, y, z])=$?

ML-style type inference reveals the identity of each subexpression

- formal parameters and global references are assumed to be separated

WP with aliases

Every mutable type carries an invisible identity token - a region:

$$
x: \operatorname{ref} \rho \text { int } \quad y: \operatorname{ref} \pi \text { int } \quad z: \text { ref } \rho \text { int }
$$

Now, some programs typecheck no more: if ... then x else y : ?
...fortunately: $\quad \mathrm{WP}($ let $r=x$ or maybe y in $r:=42, Q[x, y, z])=$?

ML-style type inference reveals the identity of each subexpression

- formal parameters and global references are assumed to be separated

Revised WP rule for assignment: $\quad \mathrm{WP}\left(x_{\tau}:=t, Q\right)=Q \sigma$
where σ replaces in Q each variable $y: \pi[\tau]$ with an updated value

- an alias of x can be stored inside a reference inside a record inside a tuple

Can we do more?

Poor man's resizable array:

```
let resa = ref (Array.make 10 0) in
    (* resa : ref \rho (array }\mp@subsup{\rho}{1}{}\mathrm{ int) *)
```


Can we do more?

Poor man's resizable array:

```
let resa = ref (Array.make 10 0) in
    (* resa : ref }\rho\mathrm{ (array }\mp@subsup{\rho}{1}{}\mathrm{ int) *)
```

Let's resize it:

```
let olda = !resa (* olda : array }\mp@subsup{\rho}{1}{}\mathrm{ int *) in
let newa = Array.make (2 * length olda) 0 in
Array.blit olda 0 newa 0 (length olda);
resa := newa (* newa : array }\mp@subsup{\rho}{2}{}\mathrm{ int *)
```


Can we do more?

Poor man's resizable array:

```
let resa = ref (Array.make 10 0) in
    (* resa : ref }\rho\mathrm{ (array }\mp@subsup{\rho}{1}{}\mathrm{ int) *)
```

Let's resize it:

```
let olda = !resa (* olda : array }\mp@subsup{\rho}{1}{}\mathrm{ int *) in
let newa = Array.make (2 * length olda) 0 in
Array.blit olda 0 newa 0 (length olda);
resa := newa (* newa : array \rho}\mp@subsup{\rho}{2}{}\mathrm{ int *)
```

Type mismatch: We break the regions \leftrightarrow aliases correspondence!

Can we do more?

Poor man's resizable array:

```
let resa = ref (Array.make 10 0) in
    (* resa : ref }\rho\mathrm{ (array }\mp@subsup{\rho}{1}{}\mathrm{ int) *)
```

Let's resize it:

```
let olda = !resa (* olda : array }\mp@subsup{\rho}{1}{}\mathrm{ int *) in
let newa = Array.make (2 * length olda) 0 in
Array.blit olda 0 newa 0 (length olda);
resa := newa (* newa : array }\mp@subsup{\rho}{2}{}\mathrm{ int *)
```

Type mismatch: We break the regions \leftrightarrow aliases correspondence!

Change the type of resa? What about if ... then resa := newa?

Yes, we can!

Let everybody keep their type:

```
let resa = ref (Array.make 10 0) in
    (* resa : ref }\rho\mathrm{ (array }\mp@subsup{\rho}{1}{}\mathrm{ int) *)
let olda = !resa (* olda : array }\mp@subsup{\rho}{1}{}\mathrm{ int *) in
let newa = Array.make (2 * length olda) 0 in
Array.blit olda 0 newa 0 (length olda);
resa.contents }\leftarrow\mathrm{ newa (* newa : array }\mp@subsup{\rho}{2}{}\mathrm{ int *)
```

newa, olda - the witnesses of the type system corruption

Yes, we can!

Let everybody keep their type:

```
let resa = ref (Array.make 10 0) in
    (* resa : ref }\rho\mathrm{ (array }\mp@subsup{\rho}{1}{}\mathrm{ int) *)
let olda = !resa (* olda : array }\mp@subsup{\rho}{1}{}\mathrm{ int *) in
let newa = Array.make (2 * length olda) 0 in
Array.blit olda 0 newa 0 (length olda);
resa.contents }\leftarrow\mathrm{ newa (* newa : array }\mp@subsup{\rho}{2}{}\mathrm{ int *)
```

newa, olda - the witnesses of the type system corruption
What do we do with undesirable witnesses? - A.G. CAPONE

Yes, we can!

Let everybody keep their type:

```
let resa = ref (Array.make 10 0) in
    (* resa : ref }\rho\mathrm{ (array }\mp@subsup{\rho}{1}{}\mathrm{ int) *)
let olda = !resa (* olda : array }\mp@subsup{\rho}{1}{}\mathrm{ int *) in
let newa = Array.make (2 * length olda) 0 in
Array.blit olda 0 newa 0 (length olda);
resa.contents }\leftarrow\mathrm{ newa (* newa : array }\mp@subsup{\rho}{2}{}\mathrm{ int *)
```

Type-changing expressions have a special effect:

$$
\text { writes } \rho \cdot \text { resets } \rho_{1}, \rho_{2}
$$

$e_{1} ; e_{2}$ is well-typed $\Rightarrow \quad$ in every free variable of e_{2}, every region reset by e_{1} occurs under a region written by e_{1}

Yes, we can!

Let everybody keep their type:

```
let resa = ref (Array.make 10 0) in
    (* resa : ref }\rho\mathrm{ (array }\mp@subsup{\rho}{1}{}\mathrm{ int) *)
let olda = !resa (* olda : array }\mp@subsup{\rho}{1}{}\mathrm{ int *) in
let newa = Array.make (2 * length olda) 0 in
Array.blit olda 0 newa 0 (length olda);
resa.contents }\leftarrow\mathrm{ newa (* newa : array }\mp@subsup{\rho}{2}{}\mathrm{ int *)
```

Type-changing expressions have a special effect:

$$
\text { writes } \rho \cdot \operatorname{resets} \rho_{1}, \rho_{2}
$$

$e_{1} ; e_{2}$ is well-typed $\Rightarrow \quad$ in every free variable of e_{2}, every region reset by e_{1} occurs under a region written by e_{1}

Thus: resa and its aliases survive, but olda and newa are invalidated.

Killer effect

$e_{1} ; e_{2}$ is well-typed \Rightarrow in every free variable of e_{2}, every region reset by e_{1} occurs under a region written by e_{1}

Killer effect

$e_{1} ; e_{2}$ is well-typed \Rightarrow in every free variable of e_{2}, every region reset by e_{1} occurs under a region written by e_{1}

The reset effect also expresses freshness:
If we create a fresh mutable value and give it region ρ, we invalidate all existing variables whose type contains ρ.

Killer effect

$e_{1} ; e_{2}$ is well-typed \Rightarrow in every free variable of e_{2}, every region reset by e_{1} occurs under a region written by e_{1}

The reset effect also expresses freshness:
If we create a fresh mutable value and give it region ρ, we invalidate all existing variables whose type contains ρ.

Effect union (for sequence or branching):
x_{τ} survives $\varepsilon_{1} \sqcup \varepsilon_{2} \quad \Leftrightarrow \quad x_{\tau}$ survives both ε_{1} and ε_{2}.

Killer effect

$e_{1} ; e_{2}$ is well-typed \Rightarrow in every free variable of e_{2}, every region reset by e_{1} occurs under a region written by e_{1}

The reset effect also expresses freshness:
If we create a fresh mutable value and give it region ρ, we invalidate all existing variables whose type contains ρ.

Effect union (for sequence or branching):
x_{τ} survives $\varepsilon_{1} \sqcup \varepsilon_{2} \quad \Leftrightarrow \quad x_{\tau}$ survives both ε_{1} and ε_{2}.
Thus:

- the reset regions of ε_{1} and ε_{2} are added together,
- the written regions of ε_{i} invalidated by ε_{2-i} are ignored.

To sum it all up

The standard WP calculus requires the absence of aliases!

- at least for modified values
- WHY3 relaxes this restriction using static control of aliases

To sum it all up

The standard WP calculus requires the absence of aliases!

- at least for modified values
- WHY3 relaxes this restriction using static control of aliases

The user must indicate the external dependencies of abstract functions:

- val set_from_g (r: ref int): unit writes $\{r\}$ reads $\{g\}$
- otherwise the static control of aliases does not have enough information

To sum it all up

The standard WP calculus requires the absence of aliases!

- at least for modified values
- WHY3 relaxes this restriction using static control of aliases

The user must indicate the external dependencies of abstract functions:

- val set_from_g (r: ref int): unit writes $\{r\}$ reads $\{g\}$
- otherwise the static control of aliases does not have enough information

For programs with arbitrary pointers we need more sophisticated tools:

- memory models (for example, "address-to-value" arrays)
- handle aliases in the VC: separation logic, dynamic frames, etc.

Abstract specification

Aliasing restrictions in WHYML
\Rightarrow certain structures cannot be implemented
Still, we can specify them and verify the client code

```
type array 'a = private { mutable ghost elts: map int 'a;
                                    length: int }
    invariant { 0 <= length }
```

- all access is done via abstract functions (private type)
- the type invariant is expressed as an axiom
- but can be temporarily broken inside a program function

Abstract specification

```
type array 'a = private { mutable ghost elts: map int 'a;
                                    length: int }
    invariant { 0 <= length }
val ([]) (a: array 'a) (i: int): 'a
    requires { 0 <= i < a.length }
    ensures { result = a.elts[i] }
val ([]<-) (a: array 'a) (i: int) (v: 'a): unit
    requires { 0 <= i < a.length }
    writes { a }
    ensures { a.elts = (old a.elts)[i <- v] }
function get (a: array 'a) (i: int): 'a = a.elts[i]
```

- the immutable fields are preserved - implicit postcondition
- the logical function get has no precondition
- its result outside of the array bounds is undefined

12. Modular programming considered useful

Declarations

- types
- abstract: type t
- synonym: type $\mathrm{t}=$ list int
- variant: type list 'a $=$ Nil | Cons 'a (list 'a)
- functions / predicates
- uninterpreted: function f int: int
- defined: predicate non_empty (l: list 'a) = l <> Nil
- inductive: inductive path t (list t) $\mathrm{t}=$...
- axioms / lemmas / goals
- goal G: forall x : int, $x>=0->x * x>=0$
- program functions (routines)
- abstract: val ([]) (a: array 'a) (i: int): 'a
- defined: let mergesort (a: array elt): unit = ...
- exceptions
- exception Found int

Modules

Declarations are organized in modules

- purely logical modules are called theories

Modules

Declarations are organized in modules

- purely logical modules are called theories

A module M_{1} can be

- used (use) in a module M_{2}
- symbols of M_{1} are shared
- axioms of M_{1} remain axioms
- lemmas of M_{1} become axioms
- goals of M_{1} are ignored

Modules

Declarations are organized in modules

- purely logical modules are called theories

A module M_{1} can be

- used (use) in a module M_{2}
- cloned (clone) in a module M_{2}
- declarations of M_{1} are copied or instantiated
- axioms of M_{1} remain axioms or become lemmas
- lemmas of M_{1} become axioms
- goals of M_{1} are ignored

Modules

Declarations are organized in modules

- purely logical modules are called theories

A module M_{1} can be

- used (use) in a module M_{2}
- cloned (clone) in a module M_{2}

Cloning can instantiate

- an abstract type with a defined type
- an uninterpreted function with a defined function
- a val with a let

Modules

Declarations are organized in modules

- purely logical modules are called theories

A module M_{1} can be

- used (use) in a module M_{2}
- cloned (clone) in a module M_{2}

Cloning can instantiate

- an abstract type with a defined type
- an uninterpreted function with a defined function
- a val with a let

One missing piece coming soon:

- instantiate a used module with another module

Exercises

http://why3.lri.fr/ejcp-2018

