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1. A quick look back
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Introduction

Software is hard. — DONALD KNUTH

...

• 1996: Ariane 5 explosion — an erroneous float-to-int conversion

• 1997: Pathfinder reset loop — priority inversion

• 1999: Mars Climate Orbiter explosion — unit error

...

• 2006: Debian SSH bug — predictable RNG (fixed in 2008)

• 2012: Heartbleed — buffer over-read (fixed in 2014)

• 1989: Shellshock — insufficient input control (fixed in 2014)

...
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A simple algorithm: Binary search

Goal: find a value in a sorted array.

First algorithm published in 1946.

First correct algorithm published in 1960.

2006: Nearly All Binary Searches and Mergesorts are Broken
(Joshua Bloch, Google, a blog post)

The code in JDK:

int mid = (low + high) / 2;

int midVal = a[mid];

Bug: addition may exceed 231−1, the maximum int in Java.

One possible solution:

int mid = low + (high - low) / 2;
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Ensure the absence of bugs

Several approaches exist: model checking, abstract interpretation, etc.

In this lecture: deductive verification

1. provide a program with a specification: a mathematical model

2. build a formal proof showing that the code respects the specification

First proof of a program: Alan Turing, 1949
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Ensure the absence of bugs

Several approaches exist: model checking, abstract interpretation, etc.

In this lecture: deductive verification

1. provide a program with a specification: a mathematical model

2. build a formal proof showing that the code respects the specification

First proof of a program: Alan Turing, 1949

u := 1

for r = 0 to n - 1 do

v := u

for s = 1 to r do

u := u + v
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Ensure the absence of bugs

Several approaches exist: model checking, abstract interpretation, etc.

In this lecture: deductive verification

1. provide a program with a specification: a mathematical model

2. build a formal proof showing that the code respects the specification

First proof of a program: Alan Turing, 1949

First theoretical foundation: Floyd-Hoare logic, 1969

First grand success in practice: metro line 14, 1998

tool: Atelier B, proof by refinement
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Other major success stories

• Flight control software in A380, 2005
safety proof: the absence of execution errors
tool: Astrée, abstract interpretation

proof of functional properties
tool: Caveat, deductive verification

• Hyper-V — a native hypervisor, 2008
tools: VCC + automated prover Z3, deductive verification

• CompCert — certified C compiler, 2009
tool: Coq, generation of the correct-by-construction code

• seL4 — an OS micro-kernel, 2009
tool: Isabelle/HOL, deductive verification
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2. Tool of the day
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WHY3 in a nutshell

WHYML, a programming language

• type polymorphism • variants

• limited support for higher order

• pattern matching • exceptions

• break, continue, and return

• ghost code and ghost data (CAV 2014)

• mutable data with controlled aliasing

• contracts • loop and type invariants

WHY3, a program verification tool

• VC generation using WP or fast WP

• 70+ VC transformations (≈ tactics)

• support for 25+ ATP and ITP systems
(Boogie 2011) (ESOP 2013) (VSTTE 2013)

WHYML, a specification language

• polymorphic & algebraic types

• limited support for higher order

• inductive predicates
(FroCos 2011) (CADE 2013)

smt.drv

file.mlw

WhyML

VCgen

Core

transform/translate

print/run

Coq Alt-Ergo CVC4 Z3 etc.
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WHY3 out of a nutshell

Three different ways of using WHY3

• as a logical language
• a convenient front-end to many theorem provers

• as a programming language to prove algorithms
• see examples in our gallery

http://toccata.lri.fr/gallery/why3.en.html

• as an intermediate verification language

• Java programs: Krakatoa (Marché Paulin Urbain)
• C programs: Frama-C (Marché Moy)
• Ada programs: SPARK 2014 (Adacore)
• probabilistic programs: EasyCrypt (Barthe et al.)
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Example: maximum subarray problem

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }
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Kadane’s algorithm

(* | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | *)
(* ......|######## max ########|.............. *)
(* ..............................|### cur #### *)

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }

=
let max = ref 0 in
let cur = ref 0 in

for i = 0 to length a - 1 do

cur += a[i];
if !cur < 0 then cur := 0;
if !cur > !max then max := !cur

done;
!max
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Kadane’s algorithm

(* | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | *)
(* ......|######## max ########|.............. *)
(* ..............................|### cur #### *)

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }

=
let max = ref 0 in
let cur = ref 0 in
let ghost cl = ref 0 in

for i = 0 to length a - 1 do
invariant { forall l: int. 0 <= l <= i -> sum a l i <= !cur }
invariant { 0 <= !cl <= i /\ sum a !cl i = !cur }

cur += a[i];
if !cur < 0 then begin cur := 0; cl := i+1 end;
if !cur > !max then max := !cur

done;
!max
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Kadane’s algorithm

(* | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | *)
(* ......|######## max ########|.............. *)
(* ..............................|### cur #### *)

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }

=
let max = ref 0 in
let cur = ref 0 in
let ghost cl = ref 0 in
let ghost lo = ref 0 in
let ghost hi = ref 0 in
for i = 0 to length a - 1 do
invariant { forall l: int. 0 <= l <= i -> sum a l i <= !cur }
invariant { 0 <= !cl <= i /\ sum a !cl i = !cur }
invariant { forall l h: int. 0 <= l <= h <= i -> sum a l h <= !max }
invariant { 0 <= !lo <= !hi <= i /\ sum a !lo !hi = !max }
cur += a[i];
if !cur < 0 then begin cur := 0; cl := i+1 end;
if !cur > !max then begin max := !cur; lo := !cl; hi := i+1 end

done;
!max
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Kadane’s algorithm

use ref.Refint
use array.Array
use array.ArraySum

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }

=
let max = ref 0 in
let cur = ref 0 in
let ghost cl = ref 0 in
let ghost lo = ref 0 in
let ghost hi = ref 0 in
for i = 0 to length a - 1 do
invariant { forall l: int. 0 <= l <= i -> sum a l i <= !cur }
invariant { 0 <= !cl <= i /\ sum a !cl i = !cur }
invariant { forall l h: int. 0 <= l <= h <= i -> sum a l h <= !max }
invariant { 0 <= !lo <= !hi <= i /\ sum a !lo !hi = !max }
cur += a[i];
if !cur < 0 then begin cur := 0; cl := i+1 end;
if !cur > !max then begin max := !cur; lo := !cl; hi := i+1 end

done;
!max
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Why3 proof session

24 / 171



3. Program correctness
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Pure terms

t ::= ...,−1,0,1, ...,42, ... integer constants

| true | false Boolean constants

| v immutable variable

| x dereferenced pointer

| t op t binary operation

| op t unary operation

op ::= + | − | ∗ arithmetic operations

| = | 6= | < | > | 6 | > arithmetic comparisons

| ∧ | ∨ | ¬ Boolean connectives

• two data types: mathematical integers and Booleans

• well-typed terms evaluate without errors (no division)

• evaluation of a term does not change the program memory
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Program expressions

e ::= skip do nothing

| t pure term

| x := t assignment

| e ; e sequence

| let v = e in e binding

| let x = ref e in e allocation

| if t then e else e conditional

| while t do e done loop

• three types: integers, Booleans, and unit

• references (pointers) are not first-class values

• expressions can allocate and modify memory

• well-typed expressions evaluate without errors
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Typed expressions

skip : unit

tτ : τ

xτ := tτ : unit

eunit ; eς : ς

let vτ = eτ in eς : ς

let xτ = ref eτ in eς : ς

if tbool then eς else eς : ς

while tbool do eunit done : unit

• τ ::= int | bool and ς ::= τ | unit
• references (pointers) are not first-class values

• expressions can allocate and modify memory

• well-typed expressions evaluate without errors
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Syntactic sugar

x := e ≡ let v = e in x := v

if e then e1 else e2 ≡ let v = e in if v then e1 else e2

if e1 then e2 ≡ if e1 then e2 else skip

e1 && e2 ≡ if e1 then e2 else false

e1 || e2 ≡ if e1 then true else e2
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Example

let sum = ref 1 in

let count = ref 0 in

while sum 6 n do

count := count + 1;

sum := sum + 2 * count + 1

done;

count

What is the result of this expression for a given n?

Informal specification:

• at the end, count contains the truncated square root of n

• for instance, given n = 42, the returned value is 6
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Example — ISQRT

let sum = ref 1 in

let count = ref 0 in

while sum 6 n do

count := count + 1;

sum := sum + 2 * count + 1

done;

count

What is the result of this expression for a given n?

Informal specification:

• at the end, count contains the truncated square root of n

• for instance, given n = 42, the returned value is 6
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Hoare triples

A statement about program correctness:

{P} e {Q}

P precondition property

e expression

Q postcondition property

What is the meaning of a Hoare triple?

{P}e {Q} if we execute e in a state that satisfies P,
then the computation either diverges
or terminates in a state that satisfies Q

This is partial correctness: we do not prove termination.
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Examples

Examples of valid Hoare triples for partial correctness:

• {x = 1} x := x + 2 {x = 3}
• {x = y} x + y {result = 2∗ y}
• {∃v . x = 4∗ v} x + 42 {∃w. result = 2∗w}

• {true} while true do skip done { false }

• after this loop, everything is trivially verified
• ergo: not proving termination can be fatal

In our square root example:

{} ISQRT {}
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Examples

Examples of valid Hoare triples for partial correctness:

• {x = 1} x := x + 2 {x = 3}
• {x = y} x + y {result = 2∗ y}
• {∃v . x = 4∗ v} x + 42 {∃w. result = 2∗w}

• {true} while true do skip done { false }
• after this loop, everything is trivially verified
• ergo: not proving termination can be fatal

In our square root example:

{?} ISQRT {?}
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Examples

Examples of valid Hoare triples for partial correctness:

• {x = 1} x := x + 2 {x = 3}
• {x = y} x + y {result = 2∗ y}
• {∃v . x = 4∗ v} x + 42 {∃w. result = 2∗w}

• {true} while true do skip done { false }
• after this loop, everything is trivially verified
• ergo: not proving termination can be fatal

In our square root example:

{n > 0} ISQRT {?}
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Examples

Examples of valid Hoare triples for partial correctness:

• {x = 1} x := x + 2 {x = 3}
• {x = y} x + y {result = 2∗ y}
• {∃v . x = 4∗ v} x + 42 {∃w. result = 2∗w}

• {true} while true do skip done { false }
• after this loop, everything is trivially verified
• ergo: not proving termination can be fatal

In our square root example:

{n > 0} ISQRT {result∗result6 n < (result+1)∗ (result+1)}
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4. Weakest precondition calculus
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Weakest preconditions

How can we establish the correctness of a program?

One solution: Edsger Dijkstra, 1975

Predicate transformer WP(e,Q)

e expression

Q postcondition

computes the weakest precondition P such that {P}e {Q}
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Definition of WP

WP(skip,Q) ≡ Q

WP(t,Q) ≡ Q[result 7→ t ]

WP(x := t,Q) ≡ Q[x 7→ t ]

WP(e1 ; e2,Q) ≡ WP(e1,WP(e2,Q))

WP(let v = e1 in e2,Q) ≡ WP(e1,WP(e2,Q)[v 7→ result])

WP(let x = ref e1 in e2,Q) ≡ WP(e1,WP(e2,Q)[x 7→ result])

WP(if t then e1 else e2,Q) ≡ (t→WP(e1,Q)) ∧
(¬t→WP(e2,Q))
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Swimming up the waterfall

if odd q then r := r + p;
p := p + p;
q := half q
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Swimming up the waterfall

(odd q→ Q[p + p, half q, r + p]) ∧
(¬ odd q→ Q[p + p, half q, r ])

if odd q then

Q[p + p, half q, r + p]

r := r + p

Q[p + p, half q, r ]

else

Q[p + p, half q, r ]

skip;

Q[p + p, half q, r ]

p := p + p;

Q[p, half q, r ]

q := half q

Q[p, q, r ]
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Definition of WP: loops

WP(while t do e done,Q) ≡
EJ : Prop . some invariant property J
J ∧ that holds at the loop entry
∀x1 . . .xk . and is preserved

(J ∧ t→WP(e,J)) ∧ after a single iteration,
(J ∧¬t→ Q) is strong enough to prove Q

x1 . . .xk references modified in e

We cannot know the values of the modified references after n iterations

• therefore, we prove preservation and the post for arbitrary values

• the invariant must provide all the needed information about the state
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Definition of WP: annotated loops

Finding an appropriate invariant is difficult in the general case
• this is equivalent to constructing a proof of Q by induction

We can ease the task of automated tools by providing annotations:

WP(while t invariant J do e done,Q) ≡ the given invariant J
J ∧ holds at the loop entry,
∀x1 . . .xk . is preserved after

(J ∧ t→WP(e,J)) ∧ a single iteration,
(J ∧¬t→ Q) and suffices to prove Q

x1 . . .xk references modified in e
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Russian Peasant Multiplication

let p = ref a in

let q = ref b in

let r = ref 0 in

while q > 0 invariant J[p,q, r ] do
if odd q then r := r + p;
p := p + p;
q := half q

done;

r
result = a ∗ b
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Russian Peasant Multiplication

let p = ref a in

let q = ref b in

let r = ref 0 in

while q > 0 invariant J[p,q, r ] do
if odd q then r := r + p;
p := p + p;
q := half q

done;

r = a ∗ b
r
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Russian Peasant Multiplication

let p = ref a in

let q = ref b in

let r = ref 0 in

while q > 0 invariant J[p,q, r ] do
(odd q→ J[p + p, half q, r + p]) ∧

(¬ odd q→ J[p + p, half q, r ])
if odd q then r := r + p;
p := p + p;
q := half q

J[p, q, r ]
done;

r = a ∗ b
r
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Russian Peasant Multiplication

let p = ref a in

let q = ref b in

let r = ref 0 in

J[p,q, r ] ∧
∀p q r . J[p,q, r ] →

(q > 0 →
(odd q→ J[p + p, half q, r + p]) ∧

(¬ odd q→ J[p + p, half q, r ])) ∧
(q 6 0 →

r = a ∗ b)
while q > 0 invariant J[p,q, r ] do

if odd q then r := r + p;
p := p + p;
q := half q

done;

r
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Russian Peasant Multiplication

J[a,b,0] ∧
∀p q r . J[p,q, r ] →

(q > 0 →
(odd q→ J[p + p, half q, r + p]) ∧

(¬ odd q→ J[p + p, half q, r ])) ∧
(q 6 0 →

r = a ∗ b)
let p = ref a in

let q = ref b in

let r = ref 0 in

while q > 0 invariant J[p,q, r ] do
if odd q then r := r + p;
p := p + p;
q := half q

done;

r
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Soundness of WP

Theorem
For any e and Q, the triple {WP(e,Q)}e {Q} is valid.

Can be proved by induction on the structure of the program e
w.r.t. some reasonable semantics (axiomatic, operational, etc.)

Corollary
To show that {P}e {Q} is valid, it suffices to prove P→WP(e,Q).

This is what WHY3 does.
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5. Run-time safety
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Run-time errors

Some operations can fail if their safety preconditions are not met:

• arithmetic operations: division par zero, overflows, etc.

• memory access: NULL pointers, buffer overruns, etc.

• assertions

A correct program must not fail:

{P}e {Q} if we execute e in a state that satisfies P,
then the computation either diverges
or terminates normally in a state that satisfies Q
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Assertions

A new kind of expression:

e ::= . . .
| assert R fail if R does not hold

The corresponding weakest precondition rule:

WP(assert R,Q) ≡ R ∧Q ≡ R ∧ (R→ Q)

The second version is useful in practical deductive verification.
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Unsafe operations

We could add other partially defined operations to the language:

e ::= . . .
| t div t Euclidean division
| a[ t ] array access
| . . .

and define the WP rules for them:

WP(t1 div t2,Q) ≡ t2 6= 0 ∧ Q[result 7→ (t1 div t2)]

WP(a[t],Q) ≡ 0 6 t < |a| ∧ Q[result 7→ a[t]]

. . .

But we would rather let the programmers do it themselves.
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6. Functions and contracts

63 / 171



Subroutines
We may want to delegate some functionality to functions:

let f (v1 : τ1) . . . (vn : τn) : ς C = e defined function

val f (v1 : τ1) . . . (vn : τn) : ς C abstract function

Function behaviour is specified with a contract:

C ::= requires P precondition
writes x1 . . .xk modified global references
ensures Q postcondition

Postcondition Q may refer to the initial value of a global reference: x◦

let incr_r (v: int): int writes x

ensures result = x◦ ∧ x = x◦+v

= let u = x in x := u+v ; u
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Subroutines
We may want to delegate some functionality to functions:

let f (v1 : τ1) . . . (vn : τn) : ς C = e defined function

val f (v1 : τ1) . . . (vn : τn) : ς C abstract function

Function behaviour is specified with a contract:

C ::= requires P precondition
writes x1 . . .xk modified global references
ensures Q postcondition

Postcondition Q may refer to the initial value of a global reference: x◦

Verification condition (~x are all global references mentioned in f ):

VC(let f . . .) ≡ ∀~x~v .P→WP(e,Q)[~x ◦ 7→~x ]
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GOSUB
One more expression:

e ::= . . .
| f t . . . t function call

and its weakest precondition rule:

WP(f t1 . . . tn,Q) ≡ Pf [~v 7→~t ] ∧
(∀~x ∀result.Qf [~v 7→~t ,~x ◦ 7→ ~w ]→ Q)[~w 7→~x ]

Pf precondition of f ~x references modified in f
Qf postcondition of f ~x references used in f
~v formal parameters of f ~w fresh variables

Modular proof: when verifying a function call,
we only use the function’s contract, not its code.
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Examples

let max (x y: int) : int

ensures { result >= x /\ result >= y }

ensures { result = x \/ result = y }

= if x >= y then x else y

val r : ref int (* declare a global reference *)

let incr_r (v: int) : int

requires { v > 0 }

writes { r }

ensures { result = old !r /\ !r = old !r + v }

= let u = !r in

r := u + v;

u
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7. Total correctness: termination
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Termination

Problem: prove that the program terminates for every
initial state that satisfies the precondition.

It suffices to show that

• every loop makes a finite number of iterations

• recursive function calls cannot go on indefinitely

Solution: prove that every loop iteration and every recursive call
decreases a certain value, called variant, with respect
to some well-founded order.

For example, for signed integers, a practical well-founded order is

i ≺ j = i < j ∧ 0 6 j
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Loop termination

A new annotation:

e ::= . . .
| while t invariant J variant t ·≺ do e done

The corresponding weakest precondition rule:

WP(while t invariant J variant s ·≺ do e done, Q) ≡
J ∧
∀x1 . . .xk .

(J ∧ t→WP(e,J ∧ s ≺ w)[w 7→ s]) ∧
(J ∧¬t→ Q)

x1 . . .xk references modified in e

w a fresh variable (the variant at the start of the iteration)
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Termination of recursive functions

A new contract clause:

let rec f (v1 : τ1) . . . (vn : τn) : ς

requires Pf

variant s ·≺
writes ~x
ensures Qf

= e

For each recursive call of f in e :

WP(f t1 . . . tn,Q) ≡ Pf [~v 7→~t ] ∧ s[~v 7→~t ]≺ s[~x 7→~x ◦] ∧
(∀~x ∀result.Qf [~v 7→~t ,~x ◦ 7→ ~w ]→ Q)[~w 7→~x ]

s[~v 7→~t ] variant at the call site ~x references used in f
s[~x 7→~x ◦] variant at the start of f ~w fresh variables
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Mutual recursion

Mutually recursive functions must have

• their own variant terms

• a common well-founded order

Thus, if f calls g t1 . . . tn, the variant decrease precondition is

sg[~vg 7→~t ]≺ s[~x 7→~x ◦]

~vg the formal parameters of g

sg the variant of g
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8. Exceptions
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Exceptions as destinations
Execution of a program can lead to

• divergence — the computation never ends

• total correctness ensures against non-termination

• abnormal termination — the computation fails

• partial correctness ensures against run-time errors

• normal termination — the computation produces a result

• partial correctness ensures conformance to the contract

• exceptional termination — produces a different kind of result
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Exceptions as destinations
Execution of a program can lead to

• divergence — the computation never ends

• total correctness ensures against non-termination

• abnormal termination — the computation fails

• partial correctness ensures against run-time errors

• normal termination — the computation produces a result

• partial correctness ensures conformance to the contract

• exceptional termination — produces a different kind of result

exception Not_found

let binary_search (a: array int) (v: int) : int
requires { forall i j. 0 6 i 6 j < length a → a[i] 6 a[j] }
ensures { 0 6 result < length a ∧ a[result] = v }
raises { Not_found → forall i. 0 6 i < length a → a[i] 6= v }
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Just another semicolon

Our language keeps growing:

e ::= . . .
| raise E raise an exception
| try e with E → e catch an exception

WP handles two postconditions now:

WP(skip,Q,QE) ≡ Q

WP(raise E,Q,QE) ≡ QE

WP(e1 ; e2,Q,QE) ≡ WP(e1,WP(e2,Q,QE),QE)

WP(try e1 with E → e2,Q,QE) ≡ WP(e1,Q, WP(e2,Q,QE))
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Just another let-in
Exceptions can carry data:

e ::= . . .
| raise E t raise an exception
| try e with E v → e catch an exception

Still, all needed mechanisms are already in WP:

WP(t,Q,QE) ≡ Q[result 7→ t ]

WP(raise E t,Q,QE) ≡ QE[result 7→ t ]

WP(let v = e1 in e2,Q,QE) ≡
WP(e1,WP(e2,Q,QE)[v 7→ result],QE)

WP(try e1 with E v → e2,Q,QE) ≡
WP(e1,Q, WP(e2,Q,QE)[v 7→ result])
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Functions with exceptions
A new contract clause:

let f (v1 : τ1) . . . (vn : τn) : ς

requires Pf

writes ~x
ensures Qf

raises E → QEf

= e

Verification condition for the function definition:

VC(let f . . .) ≡ ∀~x~v .Pf →WP(e,Qf ,QEf )[~x ◦ 7→~x ]

Weakest precondition rule for the function call:

WP(f t1 . . . tn, Q, QE) ≡ Pf [~v 7→~t ] ∧
(∀~x ∀result. Qf [~v 7→~t ,~x ◦ 7→ ~w ]→ Q)[~w 7→~x ] ∧
(∀~x ∀result. QEf [~v 7→~t ,~x ◦ 7→ ~w ]→ QE)[~w 7→~x ]
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9. WHYML types
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WHYML types

WHYML supports most of the OCaml types:

• polymorphic types

type set 'a

• tuples:

type poly_pair 'a = ('a, 'a)

• records:

type complex = { re : real; im : real }

• variants (sum types):

type list 'a = Cons 'a (list 'a) | Nil
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Algebraic types

To handle algebraic types (records, variants):

• access to record fields:

let get_real (c : complex) = c.re

let use_imagination (c : complex) = im c

• record updates:

let conjugate (c : complex) = { c with im = - c.im }

• pattern matching (no when clauses):

let rec length (l : list 'a) : int variant { l } =

match l with

| Cons _ ll -> 1 + length ll

| Nil -> 0

end
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Abstract types

Abstract types must be axiomatized:

theory Map

type map 'a 'b

function ([]) (a: map 'a 'b) (i: 'a): 'b

function ([<-]) (a: map 'a 'b) (i: 'a) (v: 'b): map 'a 'b

axiom Select_eq:

forall m: map 'a 'b, k1 k2: 'a, v: 'b.

k1 = k2 -> m[k1 <- v][k2] = v

axiom Select_neq:

forall m: map 'a 'b, k1 k2: 'a, v: 'b.

k1 <> k2 -> m[k1 <- v][k2] = m[k2]

end
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Abstract types (cont.)

Abstract types must be axiomatized:

theory Set

type set 'a

predicate mem 'a (set 'a)

predicate (==) (s1 s2: set 'a) =

forall x: 'a. mem x s1 <-> mem x s2

axiom extensionality:

forall s1 s2: set 'a. s1 == s2 -> s1 = s2

predicate subset (s1 s2: set 'a) =

forall x: 'a. mem x s1 -> mem x s2

lemma subset_refl: forall s: set 'a. subset s s

constant empty : set 'a

axiom empty_def: forall x: 'a. not (mem x empty)

...
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Logical language of WHYML

• the same types are available in the logical language

• match-with-end, if-then-else, let-in

are accepted both in terms and formulas

• functions et predicates can be defined recursively:

predicate mem (x: 'a) (l: list 'a) = match l with

Cons y r -> x = y \/ mem x r | Nil -> false end

no variants, WHY3 requires structural decrease

• inductive predicates (useful for transitive closures):

inductive sorted (l: list int) =

| SortedNil: sorted Nil

| SortedOne: forall x: int. sorted (Cons x Nil)

| SortedTwo: forall x y: int, l: list int.

x <= y -> sorted (Cons y l) ->

sorted (Cons x (Cons y l))
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10. Ghost code
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Ghost code: example

Compute a Fibonacci number using a recursive function in O(n):

let rec aux (a b n: int): int

requires { 0 <= n }

requires { }

ensures {

}

variant { n }

= if n = 0 then a else aux b (a+b) (n-1)

let fib_rec (n: int): int

requires { 0 <= n }

ensures { result = fib n }

= aux 0 1 n

(* fib_rec 5 = aux 0 1 5 = aux 1 1 4 = aux 1 2 3 =

aux 2 3 2 = aux 3 5 1 = aux 5 8 0 = 5 *)
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Ghost code: example

Compute a Fibonacci number using a recursive function in O(n):

let rec aux (a b n: int): int

requires { 0 <= n }

requires { exists k. 0 <= k /\ a = fib k /\ b = fib (k+1) }

ensures { exists k. 0 <= k /\ a = fib k /\ b = fib (k+1) /\

result = fib (k+n) }

variant { n }

= if n = 0 then a else aux b (a+b) (n-1)

let fib_rec (n: int): int

requires { 0 <= n }
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Ghost code: example

Instead of an existential we can use a ghost parameter:

let rec aux (a b n: int) (ghost k: int): int

requires { 0 <= n }

requires { 0 <= k /\ a = fib k /\ b = fib (k+1) }

ensures { result = fib (k+n) }

variant { n }

= if n = 0 then a else aux b (a+b) (n-1) (k+1)

let fib_rec (n: int): int

requires { 0 <= n }

ensures { result = fib n }

= aux 0 1 n 0
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The spirit of ghost code
Ghost code is used to facilitate specification and proof

⇒ the principle of non-interference:

We must be able to eliminate the ghost code
from a program without changing its outcome

Consequently:

• visible code cannot read ghost data
• if k is ghost, then (k + 1) is ghost, too

• ghost code cannot modify visible data
• if r is a visible reference, then r := ghost k is forbidden

• ghost code cannot alter the control flow of visible code
• if c is ghost, then if c then . . . and while c do . . . done are ghost

• ghost code cannot diverge
• we can prove while true do skip done ; assert false
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Ghost code in WHYML

Can be declared ghost:

• function parameters

val aux (a b n: int) (ghost k: int): int

• record fields and variant fields

type queue 'a = { head: list 'a; (* get from head *)

tail: list 'a; (* add to tail *)

ghost elts: list 'a; (* logical view *) }

invariant { elts = head ++ reverse tail }

• local variables and functions

let ghost x = qu.elts in ...

let ghost rev_elts qu = qu.tail ++ reverse qu.head

• program expressions

let x = ghost qu.elts in ...
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Ghost code in WHYML

Can be declared ghost:

• function parameters

val aux (a b n: int) (ghost k: int): int

• record fields and variant fields
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tail: list 'a; (* add to tail *)
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How it works?

The visible world and the ghost world are built from the same bricks.

Explicitly annotating every ghost expression would be impractical.

Solution: Tweak the type system and use inference (of course!)

Γ ` e : ς

· ε

·g

·m

ς — int, bool, unit (also: lists, arrays, etc.)

ε — potential side effects

modified references r := . . . , let r = ref . . . in
raised exceptions raise E, try . . . with E →
divergence unproved termination

g — is the expression visible or ghost?

m — is the expression’s result visible or ghost?
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Who’s ghost and who’s not?

Any variable or reference is considered ghost

• if explicitly declared ghost: let ghost vg = 6 * 6 in . . .

• if initialised with a ghost value: let rg = ref (vg + 6) in . . .

• if declared inside a ghost block: ghost (let xg = 42 in . . . )

1. term t is ghost ≡ t contains a ghost variable or reference

2. r := t is ghost ≡ r is a ghost reference (Q: what about t ?)

3. skip is not ghost

4. raise E is not ghost

unless we pass a ghost value with E : raise E vg

unless E is expected to carry ghost values: exception E (ghost int)
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3. skip is not ghost

4. raise E is not ghost

unless we pass a ghost value with E : raise E vg

unless E is expected to carry ghost values: exception E (ghost int)
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Who’s ghost and who’s not?

An expression e has a visible effect iff

- e modifies a visible reference

- e diverges (= not proved to terminate)

- e is not ghost and raises an exception

5. e1 ; e2 / let v = e1 in e2 / let v = ref e1 in e2 is ghost ≡
- e2 is ghost and e1 has no visible effects (Q: what if it has some?)

- e1 or e2 is ghost and raises an exception (Q: why does it matter?)

6. try e1 with E → e2 / try e1 with E v → e2 is ghost ≡
- e1 is ghost

- e2 is ghost and raises an exception
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Who’s ghost and who’s not?

An expression e has a visible effect iff

- e modifies a visible reference

- e diverges (= not proved to terminate)

- e is not ghost and raises an exception

7. if t then e1 else e2 is ghost ≡
- t is ghost (unless e1 or e2 is assert false)

- e1 is ghost and e2 has no visible effects

- e2 is ghost and e1 has no visible effects

- e1 or e2 is ghost and raises an exception

8. while t do e done is ghost ≡ t or e is ghost
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Who’s ghost and who’s not?

9. function call f t1 . . . tn is ghost ≡
- function f is ghost or some argument ti is ghost

unless f expects a ghost parameter at that position

When typechecking a function definition

• we expect the ghost parameters to be explicitly specified

• then the ghost status of every subexpression can be inferred

Erasure d·e erases ghost data and turns ghost code into skip.

Theorem∗: Erasure preserves the visible program semantics.

e · µ −→? c · µ ′www� www�
dee · dµe −→? dc e · dµ ′e

e · µ =⇒ ∞www� www�
dee · dµe =⇒ ∞
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Lemma functions

General idea: a function f ~x requires Pf ensures Qf that

• returns unit

• has no side effects

• terminates

provides a constructive proof of ∀~x .Pf → Qf

⇒ a pure recursive function simulates a proof by induction

function rev_append (l r: list 'a): list 'a = match l with

| Cons a ll -> rev_append ll (Cons a r) | Nil -> r end

let rec lemma length_rev_append (l r: list 'a) variant {l}

ensures { length (rev_append l r) = length l + length r }

=

match l with Cons a ll -> length_rev_append ll (Cons a r)

| Nil -> () end
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Lemma functions

function rev_append (l r: list 'a): list 'a = match l with

| Cons a ll -> rev_append ll (Cons a r) | Nil -> r end

let rec lemma length_rev_append (l r: list 'a) variant {l}

ensures { length (rev_append l r) = length l + length r }

=

match l with Cons a ll -> length_rev_append ll (Cons a r)

| Nil -> () end

• by the postcondition of the recursive call:

length (rev_append ll (Cons a r)) = length ll + length (Cons a r)

• by definition of rev_append:

rev_append (Cons a ll) r = rev_append ll (Cons a r)

• by definition of length:

length (Cons a ll) + length r = length ll + length (Cons a r)
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11. Mutable data
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Records with mutable fields

module Ref

type ref 'a = { mutable contents : 'a } (* as in OCaml *)

function (!) (r: ref 'a) : 'a = r.contents

let ref (v: 'a) = { contents = v }

let (!) (r:ref 'a) = r.contents

let (:=) (r:ref 'a) (v:'a) = r.contents <- v

end

• can be passed between functions as arguments and return values

• can be created locally or declared globally
• let r = ref 0 in while !r < 42 do r := !r + 1 done
• val gr : ref int

• can hold ghost data
• let ghost r := ref 42 in ... ghost (r := -!r) ...

• cannot be stored in recursive structures: no list (ref ’a)

• cannot be stored under abstract types: no set (ref ’a)
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The problem of alias

let double_incr (s1 s2: ref int): unit writes {s1,s2}

ensures { !s1 = 1 + old !s1 /\ !s2 = 2 + old !s2 }

= s1 := 1 + !s1; s2 := 2 + !s2

let wrong () =

let s = ref 0 in

double_incr s s; (* write/write alias *)

assert { !s = 1 /\ !s = 2 } (* in fact, !s = 3 *)

val g : ref int

let set_from_g (r: ref int): unit writes {r}

ensures { !r = !g + 1 }

= r := !g + 1

let wrong () =

set_from_g g; (* read/write alias *)

assert { !g = !g + 1 } (* contradiction *)
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WP vs. aliases

The standard WP rule for assignment:

WP(x := 42,Q[x,y ,z ]) = Q[42,y ,z ]

But if x and z are two names for the same reference

WP(x := 42,Q[x,y ,z ]) should be Q[42,y ,42]

Problem: Know, statically, when two values are aliased.

Solution: Tweak the type system and use inference (of course!)
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WP with aliases

Every mutable type carries an invisible identity token — a region:

x : ref ρ int y : ref π int z : ref ρ int

Now, some programs typecheck no more: if . . . then x else y : ?

...fortunately: WP(let r = x or maybe y in r := 42, Q[x,y ,z ]) = ?

ML-style type inference reveals the identity of each subexpression
• formal parameters and global references are assumed to be separated

Revised WP rule for assignment: WP(xτ := t,Q) = Qσ

where σ replaces in Q each variable y : π[τ] with an updated value
• an alias of x can be stored inside a reference inside a record inside a tuple
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Can we do more?

Poor man’s resizable array:

let resa = ref (Array.make 10 0) in

(* resa : ref ρ (array ρ1 int) *)

Let’s resize it:

let olda = !resa (* olda : array ρ1 int *) in

let newa = Array.make (2 * length olda) 0 in

Array.blit olda 0 newa 0 (length olda);

resa := newa (* newa : array ρ2 int *)

Type mismatch: We break the regions↔ aliases correspondence!

Change the type of resa? What about if . . . then resa := newa?
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Yes, we can!

Let everybody keep their type:

let resa = ref (Array.make 10 0) in

(* resa : ref ρ (array ρ1 int) *)

let olda = !resa (* olda : array ρ1 int *) in

let newa = Array.make (2 * length olda) 0 in

Array.blit olda 0 newa 0 (length olda);

resa.contents ← newa (* newa : array ρ2 int *)

newa, olda — the witnesses of the type system corruption

What do we do with undesirable witnesses? — A.G. CAPONE
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Yes, we can!

Let everybody keep their type:

let resa = ref (Array.make 10 0) in

(* resa : ref ρ (array ρ1 int) *)

let olda = !resa (* olda : array ρ1 int *) in

let newa = Array.make (2 * length olda) 0 in

Array.blit olda 0 newa 0 (length olda);

resa.contents ← newa (* newa : array ρ2 int *)

Type-changing expressions have a special effect:

writes ρ · resets ρ1, ρ2

e1 ; e2 is well-typed ⇒ in every free variable of e2,
every region reset by e1 occurs under a region written by e1

Thus: resa and its aliases survive, but olda and newa are invalidated.
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Killer effect

e1 ; e2 is well-typed ⇒ in every free variable of e2,
every region reset by e1 occurs under a region written by e1

The reset effect also expresses freshness:

If we create a fresh mutable value and give it region ρ ,
we invalidate all existing variables whose type contains ρ .

Effect union (for sequence or branching):

xτ survives ε1t ε2 ⇔ xτ survives both ε1 and ε2.

Thus:

• the reset regions of ε1 and ε2 are added together,

• the written regions of εi invalidated by ε2−i are ignored.
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To sum it all up

The standard WP calculus requires the absence of aliases!

• at least for modified values

• WHY3 relaxes this restriction using static control of aliases

The user must indicate the external dependencies of abstract functions:

• val set_from_g (r: ref int): unit writes {r} reads {g}

• otherwise the static control of aliases does not have enough information

For programs with arbitrary pointers we need more sophisticated tools:

• memory models (for example, “address-to-value” arrays)

• handle aliases in the VC: separation logic, dynamic frames, etc.
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Abstract specification

Aliasing restrictions in WHYML

⇒ certain structures cannot be implemented

Still, we can specify them and verify the client code

type array 'a = private { mutable ghost elts: map int 'a;

length: int }

invariant { 0 <= length }

• all access is done via abstract functions (private type)

• the type invariant is expressed as an axiom
• but can be temporarily broken inside a program function
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Abstract specification

type array 'a = private { mutable ghost elts: map int 'a;

length: int }

invariant { 0 <= length }

val ([]) (a: array 'a) (i: int): 'a

requires { 0 <= i < a.length }

ensures { result = a.elts[i] }

val ([]<-) (a: array 'a) (i: int) (v: 'a): unit

requires { 0 <= i < a.length }

writes { a }

ensures { a.elts = (old a.elts)[i <- v] }

function get (a: array 'a) (i: int): 'a = a.elts[i]

• the immutable fields are preserved — implicit postcondition
• the logical function get has no precondition

• its result outside of the array bounds is undefined
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12. Modular programming considered useful
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Declarations
• types

• abstract: type t
• synonym: type t = list int
• variant: type list 'a = Nil | Cons 'a (list 'a)

• functions / predicates
• uninterpreted: function f int: int
• defined: predicate non_empty (l: list 'a) = l <> Nil
• inductive: inductive path t (list t) t = ...

• axioms / lemmas / goals
• goal G: forall x: int, x >= 0 -> x*x >= 0

• program functions (routines)
• abstract: val ([]) (a: array 'a) (i: int): 'a
• defined: let mergesort (a: array elt): unit = ...

• exceptions
• exception Found int
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Modules

Declarations are organized in modules

• purely logical modules are called theories

module

end

module

end

module

end
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Modules

Declarations are organized in modules

• purely logical modules are called theories

A module M1 can be
• used (use) in a module M2

• symbols of M1 are shared
• axioms of M1 remain axioms
• lemmas of M1 become axioms
• goals of M1 are ignored

module

end

module

end

module

end
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Modules

Declarations are organized in modules

• purely logical modules are called theories

A module M1 can be

• used (use) in a module M2

• cloned (clone) in a module M2

• declarations of M1 are copied or instantiated
• axioms of M1 remain axioms or become lemmas
• lemmas of M1 become axioms
• goals of M1 are ignored

module

end

module

end

module

end
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Modules

Declarations are organized in modules

• purely logical modules are called theories

A module M1 can be

• used (use) in a module M2

• cloned (clone) in a module M2

Cloning can instantiate

• an abstract type with a defined type

• an uninterpreted function with a defined function

• a val with a let

module

end

module

end

module

end
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Modules

Declarations are organized in modules

• purely logical modules are called theories

A module M1 can be

• used (use) in a module M2

• cloned (clone) in a module M2

Cloning can instantiate

• an abstract type with a defined type

• an uninterpreted function with a defined function

• a val with a let

One missing piece coming soon:

• instantiate a used module with another module

module

end

module

end

module

end
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Exercises

http://why3.lri.fr/ejcp-2018
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