
Coccinelle Features

Julia Lawall (Inria/LIP6)

http://coccinelle.lip6.fr

June 25, 2018

Coccinelle features

• Isomorphisms.

• Depends on.

• Positions.

• Python.

• Nests.

Isomorphisms

Issue:

• Coccinelle matches code exactly as it appears.

• x == NULL does not match !x.

Goal:

• Transparently treat similar code patterns in a similar way.

Example: DIV ROUND UP

The following code is fairly hard to understand:

return (time_ns * 1000 + tick_ps - 1) / tick_ps;

kernel.h provides the following macro:

#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))

This is used, but not everywhere it could be.

We can write a semantic patch to introduce new uses.

DIV ROUND UP semantic patch

One option:

@@ expression n,d; @@

- (((n) + (d) - 1) / (d))

+ DIV_ROUND_UP(n,d)

Another option:

@@ expression n,d; @@

- (n + d - 1) / d

+ DIV_ROUND_UP(n,d)

Problem: How many parentheses are needed, to capture all
occurrences?

Isomorphisms

An isomorphism relates code patterns that are considered to be
similar:

Expression

@ drop_cast @ expression E; pure type T; @@

(T)E => E

Expression

@ paren @ expression E; @@

(E) => E

Expression

@ is_null @ expression X; @@

X == NULL <=> NULL == X => !X

Isomorphisms, contd.
Isomorphisms are handled by rewriting.

(((n) + (d) - 1) / (d))

becomes:
(

(((n) + (d) - 1) / (d))

|

(((n) + (d) - 1) / d)

|

(((n) + d - 1) / (d))

|

(((n) + d - 1) / d)

|

((n + (d) - 1) / (d))

|

((n + (d) - 1) / d)

|

((n + d - 1) / (d))

|

((n + d - 1) / d)

|

etc.

)

Results

@@

expression n,d;

@@

- (((n) + (d) - 1) / (d))

+ DIV_ROUND_UP(n,d)

Changes 281 occurrences in Linux 3.2.

Practical issues
Default isomorphisms are defined in standard.iso

To use a different set of default isomorphisms:

spatch --sp-file mysp.cocci --dir linux-x.y.z --iso-file empty.iso

To drop specific isomorpshisms:

@disable paren@ expression n,d; @@

- (((n) + (d) - 1) / (d))

+ DIV_ROUND_UP(n,d)

To add rule-specific isomorphisms:

@using "myparen.iso" disable paren@

expression n,d;

@@

- (((n) + (d) - 1) / (d))

+ DIV_ROUND_UP(n,d)

Exercise 6
Some Linux code combines an assignment with a test, as
illustrated by the following:

if (!(p = kmalloc(sz, GFP_KERNEL)))

break;

The following semantic patch moves the assignment out of the
conditional:

@@ identifier e1; expression e2; statement S1, S2; @@

+ e1 = e2;

if (

- (e1 = e2)

+ e1

== NULL) S1 else S2

1. Test this semantic patch on linux-3.2/sound/pci/au88x0

2. How were isomorphisms used in these matches?

Exercise 7

Run

spatch --parse-cocci sp.cocci

For some semantic patch sp.cocci that you have developed.

Explain the result.

Depends on

@@

expression n,d;

@@

- (((n) + (d) - 1) / (d))

+ DIV_ROUND_UP(n,d)

Issue:

• DIV ROUND UP is a macro, defined in kernel.h.

• Maybe some file does not include kernel.h?

• #include, if present, would not be in the same function.

Depends on, contd.

@r@

@@

#include <linux/kernel.h>

@depends on r@

expression n,d;

@@

- (((n) + (d) - 1) / (d))

+ DIV_ROUND_UP(n,d)

Results:

• Naming a rule lets it be referenced by other rules.

• Only introduce DIV ROUND UP if the #include rule is
satisfied.

• Matches 86 occurrences.

Positions and Python

@@ expression e,e1; identifier f; @@

e = kmalloc(...);

... when != e = e1

(

e == NULL || ...

|

e != NULL && ...

|

* e->f

)

Output reported as a diff:

• Useful in emacs (diff-mode).

• Perhaps less useful in other contexts.

Bonus question: Why is there no * on kmalloc?

Positions and Python

Goal:

• Collect positions of some matched elements.

• Print a helpful error message.

@r@

expression e,e1;

identifier f;

position p1, p2;

@@

e = kmalloc@p1(...);

... when != e = e1

(

e == NULL || ...

|

e != NULL && ...

|

e@p2->f

)

@script:python@

p1 << r.p1;

p2 << r.p2;

@@

l1 = p1[0].line

l2 = p2[0].line

print "kmalloc on line %s not tested

before reference on line %s" %

(l1,l2)

A refinement

Exists:

• Require only a single matching execution path.

• Default for *.

@r exists@

expression e,e1;

identifier f;

position p1, p2;

@@

e = kmalloc@p1(...);

... when != e = e1

(

e == NULL || ...

|

e != NULL && ...

|

e@p2->f

)

@script:python@

p1 << r.p1;

p2 << r.p2;

@@

l1 = p1[0].line

l2 = p2[0].line

print "kmalloc on line %s not tested

before reference on line %s" %

(l1,l2)

Exercise 8

Rewrite a semantic patch that you have implemented previously, so
that it prints the line numbers on which a change is needed, rather
than making the change.

Useful terms:

• p[0].file is the name of the file represented by p.

• p[0].line is the number, as a string, of the line represented
by p.

• p is an array, because there can be many matches.

Nests

A problem:
Linux provides generic error functions and specific ones:

• pr debug("%c is not valid", c);:

– Generic

• netdev dbg(dev->net, "registers:");;:

– Netdev specific

When to use netdev dbg?

Choosing netdev dbg

netdev dbg requires a struct net device * argument.

• Such an argument may be accessible from a parameter
of the enclosing function.

static void nc_dump_registers(struct usbnet *dev) {

u8 reg;

u16 *vp = kmalloc(sizeof (u16));

if (!vp)

return;

netdev_dbg(dev->net, "registers:");

...

}

Still, the net field is not apparent...

Semantic patch

Strategy:

• Find a function that contains a call.

• Find the type definition of each of its parameters.

• If a parameter has a type with a net device field, transform
the call.

Step 1:

@r exists@ identifier f,s,i; @@

f(...,struct s *i,...) {

<+...

pr_debug(...)

...+>

}

Nest <+... P ...+> checks whether P occurs at least once.

Solution, contd.

@rr@

identifier r.s,fld;

@@

struct s {

...

struct net_device *fld;

...

};

@@

identifier r.f,r.s,r.i,rr.fld;

@@

f(...,struct s *i,...) {

<...

- pr_debug

+ netdev_dbg

(

+ i->fld,

...)

...>

}

Optimization

Observation: Too bad to have to match f all over again.

• Remember the positions of the calls that were matched.

• Only update the calls in those positions.

Step 1:

@r exists@

identifier f,s,i;

position p;

@@

f(...,struct s *i,...) {

<+...

pr_debug@p(...)

...+>

}

Optimization, contd.

@rr@

identifier r.s,fld;

@@

struct s {

...

struct net_device *fld;

...

};

@@

identifier r.i;

position r.p;

identifier rr.fld;

@@

- pr_debug@p

+ netdev_dbg

(

+ i->fld,

...)

Exercise 9

1. The following semantic patch rule matches an initialization of
a platform driver structure:
@platform@

identifier p, probefn, removefn;

@@

struct platform_driver p = {

.probe = probefn,

.remove = removefn,

};

Extend this semantic patch to find the name of the first
parameter of the probe function and of the remove function,
and to print the function names and the corresponding
parameter names using python.

2. Some platform driver probe functions use the function
kzalloc to allocate memory. Adjust the previous semantic
patch to find and print the positions of these calls.

Exercise 9, contd.

3. Kzallocd memory must be freed using kfree, but this is
easy to forget. The function devm kzalloc is like kzalloc

but the driver library manages the freeing. Adjust the previous
semantic patch to replace calls to kzalloc by calls to
devm kzalloc.

4. The code produced by the previous rule does not compile,
because devm kzalloc requires a device argument. This can
be constructed from the first parameter of a platform driver
probe function. If this parameter is named x, then the
corresponding device value is &x->dev. Adjust the previous
semantic patch to add this as the first argument of each
generated call to devm kzalloc.

Exercise 9, contd.

5. The code resulting from the previous semantic patch has
double frees, because devm kzalloc causes an implicit free,
and the code still contains calls to kfree. How can you solve
this problem?

Summary

• Isomorphisms, for simplifying, eg NULL tests, parentheses,
casts.

• Positions, for remembering the exact position of some code.

• Python, for printing error messages, managing hashtables, etc.

• Nests, for matching any number of something.

