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Cryptographic protocols everywhere !

−→ they aim at securing communications over public networks
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◮ Secrecy: May an intruder learn some secret message
exchanged between two honest participants?

◮ Authentication: Is the agent Alice really talking to Bob?



A variety of security properties

◮ Secrecy: May an intruder learn some secret message
exchanged between two honest participants?

◮ Authentication: Is the agent Alice really talking to Bob?

◮ Anonymity: Is an attacker able to learn something about the
identity of the participants who are communicating?

◮ Non-repudiation: Alice sends a message to Bob. Alice cannot
later deny having sent this message. Bob cannot deny having
received the message.

◮ ...
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How does a cryptographic protocol work (or not)?

Protocol: small programs explaining how to exchange messages

Cryptographic: make use of cryptographic primitives

Examples: symmetric encryption, asymmetric en-
cryption, signature, hashes, . . .
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What is a symmetric encryption scheme?

Symmetric encryption

encryption decryption

Example: This might be as simple as shifting each letter by a
number of places in the alphabet (e.g. Caesar cipher)

Today: DES (1977), AES (2000)



A famous example

Enigma machine (1918-1945)

◮ electro-mechanical rotor cipher machines used
by the German to encrypt during Wold War II

◮ permutations and substitutions

A bit of history

◮ 1918: invention of the Enigma machine

◮ 1940: Battle of the Atlantic during which Alan Turing’s
Bombe was used to test Enigma settings.

−→ Everything about the breaking of the Enigma cipher systems
remained secret until the mid-1970s.
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Asymmetric encryption

encryption decryption

public key private key



What is an asymmetric encryption scheme?

Asymmetric encryption

encryption decryption

public key private key

Examples:

◮ 1976: first system published by W. Diffie, and M. Hellman,

◮ 1977: RSA system published by R. Rivest, A. Shamir, and L.
Adleman.

−→ their security relies on well-known mathematical problems (e.g.
factorizing large numbers, computing discrete logarithms)

Today: those systems are still in use Turing Award 2016



What is a signature scheme?

Signature

signature verification

private key public key

Example:

The RSA cryptosystem (in fact, most public key cryptosystems)
can be used as a signature scheme.



How cryptographic protocols can be attacked?
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How cryptographic protocols can be attacked?

Logical attacks

◮ can be mounted even assuming perfect
cryptography,
→֒ replay attack, man-in-the middle attack, . . .

◮ subtle and hard to detect by “eyeballing” the
protocol

−→ A traceability attack on the BAC protocol (2010)

priva
cy issue

The register - Jan. 2010
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Example: Denning Sacco protocol (1981)

aenc(sign(kAB , priv(A)), pub(B))

Is the Denning Sacco protocol a good key exchange protocol? No !

Description of a possible attack:

aenc(sign(kAC , priv(A)), pub(C ))

sign(kAC , priv(A))

kAC

aenc(sign(kAC , priv(A)), pub(B))



Exercise

We propose to fix the Denning-Sacco protocol as follows:

Version 1

A → B : aenc(〈A,B , sign(k , priv(A))〉, pub(B))

Version 2

A → B : aenc(sign(〈A,B , k〉, priv(A))〉, pub(B))

Which version would you prefer to use?



Exercise

We propose to fix the Denning-Sacco protocol as follows:

Version 1

A → B : aenc(〈A,B , sign(k , priv(A))〉, pub(B))

Version 2

A → B : aenc(sign(〈A,B , k〉, priv(A))〉, pub(B))

Which version would you prefer to use? Version 2

−→ Version 1 is still vulnerable to the aforementioned attack.



What about protocols used in real life ?
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Credit Card payment protocol

Serge Humpich case
“ Yescard “ (1997)

Step 1: A logical flaw in the protocol allows one to copy a card and
to use it without knowing the PIN code.

−→ not a real problem, there is still a bank account to withdraw

Step 2: breaking encryption via factorisation of the following
(96 digits) number:
213598703592091008239502270499962879705109534182
6417406442524165008583957746445088405009430865999

−→ now, the number that is used is made of 232 digits
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FREAK attack discovered by Baraghavan et al (Feb. 2015)

1. a logical flaw that allows a man in the middle attacker to
downgrade connections from ’strong’ RSA to ’export-grade’
RSA;

2. breaking encryption via factorisation of such a key can be
easily done.



HTTPS connections

Lots of bugs and attacks, with fixes every month

FREAK attack discovered by Baraghavan et al (Feb. 2015)

1. a logical flaw that allows a man in the middle attacker to
downgrade connections from ’strong’ RSA to ’export-grade’
RSA;

2. breaking encryption via factorisation of such a key can be
easily done.

−→ ’export-grade’ were introduced under the pressure of US
governments agencies to ensure that they would be able to decrypt
all foreign encrypted communication.
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This talk: formal methods for protocol verification

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

Outline of the this talk

1. Modelling protocols, security properties, and the attacker

2. Designing verification algorithms



Part I

Modelling protocols, security properties

and the attacker



Two major families of models ...

... with some advantages and some drawbacks.

Computational model

◮ + messages are bitstring, a general and powerful adversary

◮ – manual proofs, tedious and error-prone

Symbolic model

◮ – abstract model, e.g. messages are terms

◮ + automatic proofs



Two major families of models ...

... with some advantages and some drawbacks.

Computational model

◮ + messages are bitstring, a general and powerful adversary

◮ – manual proofs, tedious and error-prone

Symbolic model

◮ – abstract model, e.g. messages are terms

◮ + automatic proofs

Some results allowed to make a link be-
tween these two very different models.

−→ Abadi & Rogaway 2000



Protocols as processes

Applied pi calculus [Abadi & Fournet, 01]
basic programming language with constructs for concurrency and
communication

−→ based on the π-calculus [Milner et al., 92] ...

P ,Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation



Protocols as processes

Applied pi calculus [Abadi & Fournet, 01]
basic programming language with constructs for concurrency and
communication

−→ based on the π-calculus [Milner et al., 92] ...

P ,Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation

... but messages that are exchanged are not necessarily atomic !
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Messages as terms

Terms are built over a set of names N , and a signature F .

t ::= n name n

| f (t1, . . . , tk) application of symbol f ∈ F

Example: representation of {a, n}k

◮ Names: n, k , a

◮ constructors: senc, pair,

◮ destructors: sdec, proj1, proj2.

senc

pair k

a n

The term algebra is equipped with an equational theory E.

sdec(senc(x , y), y) = x proj1(pair(x , y)) = x

proj2(pair(x , y)) = y

Example: sdec(senc(s, k), k) =E s.



Semantics

Semantics →:

Comm out(c , u).P | in(c , x).Q → P | Q{u/x}

Then if u = v then P else Q → P when u =E v

Else if u = v then P else Q → Q when u 6=E v



Semantics

Semantics →:

Comm out(c , u).P | in(c , x).Q → P | Q{u/x}

Then if u = v then P else Q → P when u =E v

Else if u = v then P else Q → Q when u 6=E v

closed by

◮ structural equivalence (≡):

P | Q ≡ Q | P , P | 0 ≡ P , . . .

◮ application of evaluation contexts:

P → P ′

newn.P → newn.P ′

P → P ′

P | Q → P ′ | Q
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Going back to the Denning Sacco protocol (1/3)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

What symbols and equations do we need to model this protocol?

1. symmetric encryption: senc and sdec

sdec(senc(x , y), y) = x

2. asymmetric encryption: aenc, adec, and pk

adec(aenc(x , pk(y)), y) = x

3. signature: ok, sign, check, getmsg, and pk

check(sign(x , y), pk(y)) = ok and getmsg(sign(x , y)) = x

The two terms involved in a normal execution are:

aenc(sign(k , ska), pk(skb)), and senc(s, k)
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Going back to the Denning Sacco protocol (3/3)

PA(ska, pkb) =
new k.

out(c, aenc(sign(k, ska), pkb)).
in(c, xa). . . .

PB(skb, pka) =
in(c, xb).
if check(adec(xb, skb), pka) = ok then

new s.

out(c, senc(s, getmsg(adec(xb, skb))))

We consider the following scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb, pk(ska)
)

→ new ska, skb, k .
(

in(c , xa). . . .
| if check(adec(aenc(sign(k , ska), pkb), skb), pka) = ok then
new s.out(c , senc(s, getmsg(adec(aenc(sign(k , ska), pkb), skb))))

)

→ new ska, skb, k .
(

in(c , xa). . . .
new s.out(c , senc(s, getmsg(adec(aenc(sign(k , ska), pkb), skb))))

)

−→ this derivation represents a normal execution between two
honest participants
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Security properties - confidentiality

Confidentiality for process P w.r.t. secret s

For all processes A such that A | P →∗ Q, we have that Q is not of
the form C [out(c , s).Q ′] with c public.

Some difficulties:

◮ we have to consider all the possible executions in presence of
an arbitrary adversary (modelled as a process)

◮ we have to consider realistic initial configurations

◮ an unbounded number of agents,
◮ replications to model an unbounded number of sessions,
◮ reveal public keys and private keys to model dishonest agents,
◮ honest agents may initiate a session with a dishonest agent, . . .

−→ Going back to the Denning Sacco protocol



Part II

Designing verification algorithms

confidentiality, authentication



State of the art in a nutshell

for analysing confidentiality/authentication properties

Unbounded number of sessions

◮ undecidable in general [Even & Goldreich, 83; Durgin et al, 99]

◮ decidable for restricted classes [Lowe, 99] [Rammanujam &

Suresh, 03]

−→ existing verification tools: ProVerif, Tamarin, Maude-NPA, . . .



State of the art in a nutshell

for analysing confidentiality/authentication properties

Unbounded number of sessions

◮ undecidable in general [Even & Goldreich, 83; Durgin et al, 99]

◮ decidable for restricted classes [Lowe, 99] [Rammanujam &

Suresh, 03]

−→ existing verification tools: ProVerif, Tamarin, Maude-NPA, . . .

Bounded number of sessions

◮ a decidability result (NP-complete)
[Rusinowitch & Turuani, 01; Millen & Shmatikov, 01]

◮ result extended to deal with various cryptographic primitives.

−→ automatic tools, e.g. AVISPA platform [Armando et al., 05]



ProVerif [Blanchet, 01]

ProVerif is a verifier for cryptographic protocols that may prove
that a protocol is secure or exhibit attacks.

http://proverif.inria.fr

Advantages

◮ fully automatic, and quite efficient

◮ a rich process algebra: replication, else branches, . . .

◮ handles many cryptographic primitives

◮ various security properties: secrecy, correspondences,
equivalences

http://proverif.inria.fr


ProVerif [Blanchet, 01]

ProVerif is a verifier for cryptographic protocols that may prove
that a protocol is secure or exhibit attacks.

http://proverif.inria.fr

Advantages

◮ fully automatic, and quite efficient

◮ a rich process algebra: replication, else branches, . . .

◮ handles many cryptographic primitives

◮ various security properties: secrecy, correspondences,
equivalences

No miracle

◮ the tool can say “can not be proved”;

◮ termination is not guaranteed

http://proverif.inria.fr


How does ProVerif work?

Skip details



Some vocabulary

First order logic

Atoms P(t1, . . . , tn) where ti are terms, P is a predicate

Literals P(t1, . . . , tn) or ¬P(t1, . . . , tn)

closed under ∨,∧,¬, ∃, ∀

Clauses: Only universal quantifiers

Horn Clauses: at most one positive literal (where Ai ,B are atoms.)

∀x̃ . A1, . . . ,An ⇒ B



Modelling the attacker using Horn clauses

Public key encryption

att(x) ⇒ att(pk(x))
att(x), att(pk(y)) ⇒ att(aenc(x , pk(y)))

att((aenc(x , pk(y))), att(y) ⇒ att(x)

Signature
att(x), att(y) ⇒ att(sign(x , y))
att(sign(x , y)) ⇒ att(x)

Symmetric encryption

att(x), att(y) ⇒ att(senc(x , y))
att((senc(x , y)), att(y) ⇒ att(x)

Initial knowledge

⇒ att(pk(skA)) ⇒ att(skI ) ⇒ att(pk(skB))



Modelling the protococol using Horn clauses

Denning-Sacco protocol . . .

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

. . . using Horn clauses

◮ A talks with any principal represented by its public key pk(x).

att(pk(x)) ⇒ att(aenc(sign(k , skA), pk(x)))

◮ When B receives a message of the expected form, he replies
accordingly

att(aenc(sign(y , skA), pk(skB))) ⇒ att(senc(s, y))



Modelling the protococol using Horn clauses

Denning-Sacco protocol . . .

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

. . . using Horn clauses

◮ A talks with any principal represented by its public key pk(x).

att(pk(x)) ⇒ att(aenc(sign(k[x ], skA), pk(x)))

◮ When B receives a message of the expected form, he replies
accordingly

att(aenc(sign(y , skA), pk(skB))) ⇒ att(senc(s, y))

−→ names are parametrized to partially modelled their freshness
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Modelling the security property using Horn clauses

We consider secrecy as a reachability (accessibility) property.

Is Catt + Cprot + ¬att(s) satisfiable or not?

Denning Sacco protocol

att(skI ) initial knowledge
att(pk(skI )) using attacker rules
att(aenc(sign(k[skI ], skA), pk(skI ))) using protocol (rule 1)
att(aenc(sign(k[skI ], skA), pk(skB)) using attacker rules and

att(pk(skB) (initial knowledge)
att(senc(s, k[skI ])) using protocol (rule 2)
att(k[skI ]) using attacker rules
att(s) using decryption

Contradiction with ¬att(s)!

−→ This set of clauses in not satisfiable.
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H ⇒ att(u) att(v),H ′ ⇒ C
θ = mgu(u, v)

(H,H ′ ⇒ C )θ
Resolution
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(H,H ′ ⇒ C )θ
Resolution

Example

⇒ att(pk(skI )) att(pk(x)) ⇒ att(aenc(sign(k[x ], skA), pk(x)))
θ = {x 7→ skI}

⇒ att(aenc(sign(k[skI ], skA), pk(skI )))



How to decide satisfiability?

−→ using resolution techniques

H ⇒ att(u) att(v),H ′ ⇒ C
θ = mgu(u, v)

(H,H ′ ⇒ C )θ
Resolution

Example

⇒ att(pk(skI )) att(pk(x)) ⇒ att(aenc(sign(k[x ], skA), pk(x)))
θ = {x 7→ skI}

⇒ att(aenc(sign(k[skI ], skA), pk(skI )))

Theorem (soundness and completeness)

Resolution is sound and refutationally complete, i.e. a set of Horn
clauses C is not satisfiable if and only if � (the empty clause) can
be obtained from C by using the resolution rule.



Exercises

Consider the Horn clauses given on the previous slides to model the
Denning Sacco protocol.

Exercise
Exhibit an infinite derivation (using resolution).

Exercise
Apply resolution to derive the empty clause.



ProVerif

ProVerif implements a resolution strategy well-adapted to protocols.

Approximation of the translation in Horn clauses:

◮ the freshness of nonces is partially modeled;

◮ the number of times a message appears is ignored, only the
fact that is has appeared is taken into account;

◮ the state of the principals is not fully modeled.

−→ These approximations are keys for an efficient verification.



Experimental results

−→ ProVerif works well in practice.

Protocol Result ms

Needham-Schroeder shared key Attack 52
Needham-Schroeder shared key corrected Secure 109
Denning-Sacco Attack 6
Denning-Sacco corrected Secure 7
Otway-Rees Secure 10
Otway-Rees, variant of Paulson98 Attack 12
Yahalom Secure 10
Simpler Yahalom Secure 11
Main mode of Skeme Secure 23

Pentium III, 1 GHz.



Challenge (to discuss during the break)

Would you be able to find the attack on the well-known
Needham-Schroeder protocol?

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)



Challenge (to discuss during the break)

Would you be able to find the attack on the well-known
Needham-Schroeder protocol?

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

Questions

◮ Is Nb secret between A and B ?

◮ When B receives {Nb}pub(B), does this message really comes
from A ?
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Challenge (1/2)

Would you be able to find the attack on the well-known
Needham-Schroeder protocol (1978)?

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

Questions

◮ Is Nb secret between A and B ?

◮ When B receives {Nb}pub(B), does this message really comes
from A ?



Challenge (2/2)

An attack has been found 17 years after

the publication of this protocol !

Man in the middle attack due to G. Lowe 1995

◮ involving 2 sessions in parallel,

◮ an honest agent has to initiate a session with C.

Fixed version of the protocol

A → B : {A,Na}pub(B)

B → A : {Na,Nb,B}pub(A)

A → B : {Nb}pub(B)

−→ the responder’s identity has been added to the second message



Security protocols everywhere !

It becomes more and more important to protect our privacy.



Electronic passport

An e-passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

◮ the information printed on your passport;

◮ a JPEG copy of your picture;

◮ . . .

The Basic Access Control (BAC) protocol is a key establishment
protocol that has been designed to protect our personnal data, and
to ensure unlinkability.

Unlinkability aims to ensure that a user may make multiple uses

of a service or resource without others being able to link these

uses together. [ISO/IEC standard 15408]



BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)
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BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP ,KP

NP

NR ,KR

{NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

{NP ,NR ,KP}KE
, MACKM

({NP ,NR ,KP}KE
)

Kseed = KP ⊕ KR Kseed = KP ⊕ KR



A brief recap

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

How can we check privacy-type security properties?



Part I

Modelling protocols, security properties

and the attacker



Messages as terms (on an example)

Nonces nr , np, and keys kr , kp, ke , km are
modelled using names

Cryptographic primitives are modelled using function symbols

◮ encryption/decryption: senc/2, sdec/2

◮ concatenation/projections: 〈 , 〉/2, proj1/1, proj2/1

◮ mac construction: mac/2

Properties of the primitives are modelled using an equational theory.

sdec(senc(x , y), y) = x , proj1(〈x , y〉) = x , proj2(〈x , y〉) = y .



Protocols as processes (on an example)

P → R : Np

R → P : {NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

P → R : {NP ,NR ,KP}KE
, MACKM

({NP ,NR ,KP}KE
)

Modelling Passport’s role
PBAC(kE , kM) = new nP .new kP .out(nP).in(〈zE , zM〉).

if zM = mac(zE , kM) then if nP = proj1(proj2(sdec(zE , kE )))
then out(〈m,mac(m, kM)〉)
else 0

else 0

where m = senc(〈nP , 〈proj1(zE ), kP〉〉, kE ).



What does unlinkability mean?

Informally, an attacker can not observe the difference between the
two following situations:

1. a situation where the same passport
may be used twice (or even more);

2. a situation where each passport is used
at most once.



What does unlinkability mean?

Informally, an attacker can not observe the difference between the
two following situations:

1. a situation where the same passport
may be used twice (or even more);

2. a situation where each passport is used
at most once.

More formally,

!new ke.new km.(!PBAC | !RBAC)
?
≈ !new ke.new km.( PBAC | !RBAC)

↑ ↑

many sessions

for each passport

only one session
for each passport

(we still have to formalize the notion of equivalence)



Security properties - privacy

Privacy-type properties are modelled relying on testing equivalence.
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Privacy-type properties are modelled relying on testing equivalence.

Testing equivalence between P and Q, denoted P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .
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Privacy-type properties are modelled relying on testing equivalence.

Testing equivalence between P and Q, denoted P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Exercise 1: out(a, yes)
?
≈ out(a, no)



Security properties - privacy

Privacy-type properties are modelled relying on testing equivalence.

Testing equivalence between P and Q, denoted P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Exercise 1: out(a, yes) 6≈ out(a, no)

−→ A = in(a, x).if x = yes then out(c , ok)



Security properties - privacy

Privacy-type properties are modelled relying on testing equivalence.

Testing equivalence between P and Q, denoted P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Exercise 2: k and k ′ are known to the attacker

new s.out(a, senc(s, k)).out(a, senc(s, k ′))
?
≈

new s, s ′.out(a, senc(s, k)).out(a, senc(s ′, k ′))



Security properties - privacy

Privacy-type properties are modelled relying on testing equivalence.

Testing equivalence between P and Q, denoted P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Exercise 2: k and k ′ are known to the attacker

new s.out(a, senc(s, k)).out(a, senc(s, k ′))
6≈

new s, s ′.out(a, senc(s, k)).out(a, senc(s ′, k ′))

−→ in(a, x).in(a, y).if (sdec(x , k) = sdec(y , k ′)) then out(c , ok)



Security properties - privacy

Privacy-type properties are modelled relying on testing equivalence.

Testing equivalence between P and Q, denoted P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Exercise 3: Are the two following processes in testing
equivalence?

new s.out(a, s)
?
≈ new s.new k .out(a, senc(s, k))



Some other equivalence-based security properties

The notion of testing equivalence can be used to express:

Vote privacy
the fact that a particular voted in a particular
way is not revealed to anyone

Strong secrecy
the fact that an adversary cannot see any difference when the value
of the secret changes
−→ stronger than the notion of secrecy as non-deducibility.

Guessing attack
the fact that an adversary can not learn the
value of passwords even if he knows that they
have been choosen in a particular dictionary.



Part II

Designing verification algorithms

privacy-type properties



State of the art for testing equivalence (no !)

for analysing testing equivalence

bounded number of sessions



State of the art for testing equivalence (no !)

for analysing testing equivalence

bounded number of sessions

Some important results:

◮ A decision procedure implemented in the tool Apte:
non-trivial else branches, private channels, and
non-deterministic choice, a fixed set of primitives

[Cheval, Comon & D., 11]

◮ A procedure implemented in the tool Akiss:
no else branches, but a larger class of primitives

[Chadha et al, 12]

−→ A decision procedure implemented in the tool DEEPSEC
[Cheval, Kremer & Rakotonirina, 2018]
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French electronic passport
−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP ,KP

NP

NR ,KR

{NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

If MAC check
succeeds

If nonce check fails

nonce_error



An attack on the French passport [Chothia & Smirnov, 10]

An attacker can track a French passport, provided he has once
witnessed a successful authentication.



An attack on the French passport [Chothia & Smirnov, 10]

An attacker can track a French passport, provided he has once
witnessed a successful authentication.

Part 1 of the attack. The attacker eavesdropes on Alice using her
passport and records message M.

Alice’s Passport
(KE ,KM)

Reader
(KE ,KM)

NP ,KP

NP

NR ,KR

M = {NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)



An attack on the French passport [Chothia & Smirnov, 10]

An attacker can track a French passport, provided he has once
witnessed a successful authentication.

Part 2 of the attack.
The attacker replays M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
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An attack on the French passport [Chothia & Smirnov, 10]

An attacker can track a French passport, provided he has once
witnessed a successful authentication.

Part 2 of the attack.
The attacker replays M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

N′

P ,K
′

P

N′

P

M = {NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

mac_error

=⇒ MAC check failed =⇒ K ′

M 6= KM =⇒ ???? is not Alice



An attack on the French passport [Chothia & Smirnov, 10]

An attacker can track a French passport, provided he has once
witnessed a successful authentication.

Part 2 of the attack.
The attacker replays M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

N′

P ,K
′

P

N′

P

M = {NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

nonce_error

=⇒ MAC check succeeded =⇒ K ′

M = KM =⇒ ???? is Alice



State of the art for testing equivalence (with !)

for analysing testing equivalence

unbounded number of sessions



State of the art for testing equivalence (with !)

for analysing testing equivalence

unbounded number of sessions

◮ undecidable in general even for some fragment for which
confidentiality is decidable [Chrétien, Cortier & D., 13]

◮ some recent decidability results for some restricted fragment
e.g. tagged protocols, no nonces, a particular set of primitives
. . . [Chrétien, Cortier & D., Icalp’13, Concur’14, CSF’15]

◮ some existing verification tools: ProVerif, Tamarin, . . .
for analysing the notion of diff-equivalence (stronger than
testing equivalence) [Blanchet, Abadi & Fournet, 05] [Basin,
Dreier & Sasse, 15]

None of these results is suitable to analyse vote-privacy, or
unlinkability of the BAC protocol.



Diff-equivalence is often too strong in practice

Vote privacy
the fact that a particular voted in a particular
way is not revealed to anyone

VA(yes) | VB(no) ≈ VA(no) | VB(yes)

−→ ProSwapper extension [Blanchet & Smyth, 2016]



Diff-equivalence is often too strong in practice

Vote privacy
the fact that a particular voted in a particular
way is not revealed to anyone

VA(yes) | VB(no) ≈ VA(no) | VB(yes)

−→ ProSwapper extension [Blanchet & Smyth, 2016]

Unlinkability a user may make multiple uses
of a resource without other being able to link
these uses together.

! new k .!P ≈ ! new k .P

−→ UKANO extension [Hirschi, Baelde, & D, 2016]



UKANO extension (1/2) [Hirschi, Baelde, & D, 2016]

Provide a method to analyse unlinkability for a large class of 2 party
protocols, and tool support for that.



UKANO extension (1/2) [Hirschi, Baelde, & D, 2016]

Provide a method to analyse unlinkability for a large class of 2 party
protocols, and tool support for that.

On the theoretical side
2 reasonable conditions implying anonymity and unlinkability for a
large class of 2 party protocols

On the practical side

◮ our conditions can be checked automatically using existing
tools, and we provide tool support for that.

◮ new proofs and attacks on several RFID protocols.

−→ first results published at Security & Privacy in 2016 extended
since to deal with a larger class of processes



UKANO extension (2/2) – summary of our case studies

Protocol FO WA unlinkability

Feldhofer ✓ ✓ safe

Feldhofer variant (with !) ✓ ✗ attack

Hash-Lock ✓ ✓ safe

LAK (stateless) − ✗ attack
Fixed LAK ✓ ✓ safe

BAC ✓ ✓ safe

BAC/PA/AA ✓ ✓ safe

PACE (faillible dec) − ✗ attack
PACE (as in [Bender et al, 09]) − ✗ attack
PACE − ✗ attack
PACE with tags ✓ ✓ safe

DAA sign ✓ ✓ safe

DAA join ✓ ✓ safe

abcdh (irma) ✓ ✓ safe



Conclusion



To sum up

Cryptographic protocols are:

◮ difficult to design and analyse;
◮ particularly vulnerable to logical attacks.

Strong primitives are necessary . . .

. . .but this is not sufficient !



To sum up

Cryptographic protocols are:

◮ difficult to design and analyse;

◮ particularly vulnerable to logical attacks.

It is important to ensure that
the protocols we are using every day work properly.

We now have automatic and powerful verification tools to analyse:

◮ classical security goals, e.g. secrecy and authentication;

◮ relatively small protocols;

◮ protocols that rely on standard cryptographic primitives.



Limitations of the symbolic approach

1. the algebraic properties of the primitives are abstracted away
−→ no guarantee if the protocol relies on an encryption that
satisfies some additional properties (e.g. RSA, ElGamal)

2. only the specification is analysed and not the implementation
−→ most of the passports are actually linkable by a carefull
analysis of time or message length.

http://www.loria.fr/g̃londu/epassport/attaque-tailles.html

3. when considering a bounded number of sessions, not all
scenario are checked
−→ no guarantee if the protocol is used one more time !



It remains a lot to do

◮ formal definitions of some sublte security properties
−→ receipt-freeness, coercion-resistance in e-voting

◮ algorithms (and tools!) for checking automatically trace
equivalence for various cryptographic primitives;
−→ homomorphic encryption used in e-voting, exclusive-or
used in RFID protocols

◮ more composition results
−→ Could we derive some security guarantees of the whole
e-passport application from the analysis performed on each
subprotocol?

◮ develop more fine-grained models (and tools) to take into
account side channel attacks
−→ e.g. timing attacks



Questions ?


