
Abstract Interpretation
and Properties of C Programs

EJCP 2018

Virgile Prevosto
virgile.prevosto@cea.fr

June 26th, 2018

mailto:virgile.prevosto@cea.fr

Context

Context

Overview of Static Analysis

Analyzing C code with Frama-C

EVA Plugin

Context Introduction

I Software is more and more pervasive in embedded systems...
I ...and keeps getting larger
I Tests and code review too costly beyond a certain size and

coverage criterion
I Need for correct tools

4 Detect all potential issues
8 May issue spurious warnings
8 Impossible for an automated tool to warn for all real issues and only

for them (Rice theorem)

Context Introduction

I Software is more and more pervasive in embedded systems...
I ...and keeps getting larger
I Tests and code review too costly beyond a certain size and

coverage criterion
I Need for correct tools

4 Detect all potential issues
8 May issue spurious warnings
8 Impossible for an automated tool to warn for all real issues and only

for them (Rice theorem)

Context Summary

Context

Overview of Static Analysis

Analyzing C code with Frama-C

EVA Plugin

Context Abstract Interpretation in two pictures

Abstract interpretation is about
I abstracting away information
I ensuring answer in a reasonable time
I while retaining adequate precision
I and guaranteeing correct answers

Context Abstract Interpretation in two pictures

Abstract interpretation is about
I abstracting away information
I ensuring answer in a reasonable time
I while retaining adequate precision
I and guaranteeing correct answers

Context Abstract Interpretation in two pictures

Abstract interpretation is about
I abstracting away information
I ensuring answer in a reasonable time
I while retaining adequate precision
I and guaranteeing correct answers

Context Abstract Interpretation in two pictures

Abstract interpretation is about
I abstracting away information
I ensuring answer in a reasonable time
I while retaining adequate precision
I and guaranteeing correct answers

Context Abstract Interpretation in two pictures

Abstract interpretation is about
I abstracting away information
I ensuring answer in a reasonable time
I while retaining adequate precision
I and guaranteeing correct answers

Overview of Static Analysis

Context

Overview of Static Analysis
Static Analysis Framework
Abstract Interpretation

Analyzing C code with Frama-C

EVA Plugin

Overview of Static Analysis
Static Analysis Framework

Control-Flow Graph

mpz_ptr syracuse(mpz_t res, const mpz_t arg) {
mpz_t x;
mpz_init_set_ui(res,0UL);
mpz_init_set(x,arg);
while (mpz_cmp_ui(x,1UL)>0) {
mpz_out_str(stdout,10,x);
putchar(’\n’);
if (mpz_odd_p(x)) {

mpz_mul_ui(x,x,3UL);
mpz_add_ui(x,x,1UL);

} else {
mpz_cdiv_q_ui(x,x,2UL);

}
mpz_add_ui(res,res,1UL);

}
mpz_clear(x);
return res;

}

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1

Overview of Static Analysis
Static Analysis Framework

Trace Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1

I Initial state on start node
I Transfer functions across

edges
8 infinite number of traces
8 some traces might be

infinite

Overview of Static Analysis
Static Analysis Framework

Trace Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1

arg 7→ 5
s0

arg 7→ 5

I Initial state on start node
I Transfer functions across

edges
8 infinite number of traces
8 some traces might be

infinite

Overview of Static Analysis
Static Analysis Framework

Trace Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1

arg 7→ 5

x 7→ 5

s0
arg 7→ 5

s1
x 7→ 5

res 7→ 0

I Initial state on start node
I Transfer functions across

edges
8 infinite number of traces
8 some traces might be

infinite

Overview of Static Analysis
Static Analysis Framework

Trace Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1

arg 7→ 5

x 7→ 5

x 7→ 5

s0
arg 7→ 5

s1
x 7→ 5

res 7→ 0

s2
x 7→ 5

res 7→ 0

I Initial state on start node
I Transfer functions across

edges
8 infinite number of traces
8 some traces might be

infinite

Overview of Static Analysis
Static Analysis Framework

Trace Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1

arg 7→ 5

x 7→ 5

x 7→ 5

x 7→ 5

s0
arg 7→ 5

s1
x 7→ 5

res 7→ 0

s2
x 7→ 5

res 7→ 0

s3
x 7→ 5

res 7→ 0

I Initial state on start node
I Transfer functions across

edges
8 infinite number of traces
8 some traces might be

infinite

Overview of Static Analysis
Static Analysis Framework

Trace Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1

arg 7→ 5

x 7→ 5

x 7→ 5

x 7→ 5

x 7→ 16

s0
arg 7→ 5

s1
x 7→ 5

res 7→ 0

s2
x 7→ 5

res 7→ 0

s3
x 7→ 5

res 7→ 0

s4
x 7→ 16
res 7→ 0

I Initial state on start node
I Transfer functions across

edges
8 infinite number of traces
8 some traces might be

infinite

Overview of Static Analysis
Static Analysis Framework

Trace Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1

arg 7→ 5

x 7→ 5

x 7→ 5

x 7→ 5

x 7→ 16

x 7→ 16

s0
arg 7→ 5

s1
x 7→ 5

res 7→ 0

s2
x 7→ 5

res 7→ 0

s3
x 7→ 5

res 7→ 0

s4
x 7→ 16
res 7→ 0

s7
x 7→ 16
res 7→ 0

I Initial state on start node
I Transfer functions across

edges
8 infinite number of traces
8 some traces might be

infinite

Overview of Static Analysis
Static Analysis Framework

Trace Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1

arg 7→ 5

x 7→ 5

x 7→ 5

x 7→ 5

x 7→ 16

x 7→ 16

res 7→ 1

s0
arg 7→ 5

s1
x 7→ 5

res 7→ 0

s2
x 7→ 5

res 7→ 0

s3
x 7→ 5

res 7→ 0

s4
x 7→ 16
res 7→ 0

s7
x 7→ 16
res 7→ 0

s8
x 7→ 16
res 7→ 1

I Initial state on start node
I Transfer functions across

edges
8 infinite number of traces
8 some traces might be

infinite

Overview of Static Analysis
Static Analysis Framework

Trace Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1

arg 7→ 5

x 7→ 5

x 7→ 5

x 7→ 5

x 7→ 16

x 7→ 16

res 7→ 1

x 7→ 16

s0
arg 7→ 5

s1
x 7→ 5

res 7→ 0

s2
x 7→ 5

res 7→ 0

s3
x 7→ 5

res 7→ 0

s4
x 7→ 16
res 7→ 0

s7
x 7→ 16
res 7→ 0

s8
x 7→ 16
res 7→ 1

s1
x 7→ 16
res 7→ 1

I Initial state on start node
I Transfer functions across

edges
8 infinite number of traces
8 some traces might be

infinite

Overview of Static Analysis
Static Analysis Framework

Trace Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1

arg 7→ 5

x 7→ 5

x 7→ 5

x 7→ 5

x 7→ 16

x 7→ 16

res 7→ 1

x 7→ 16

. . .

s0
arg 7→ 5

s1
x 7→ 5

res 7→ 0

s2
x 7→ 5

res 7→ 0

s3
x 7→ 5

res 7→ 0

s4
x 7→ 16
res 7→ 0

s7
x 7→ 16
res 7→ 0

s8
x 7→ 16
res 7→ 1

s1
x 7→ 16
res 7→ 1

s2
x 7→ 16
res 7→ 1

I Initial state on start node
I Transfer functions across

edges
8 infinite number of traces
8 some traces might be

infinite

Overview of Static Analysis
Static Analysis Framework

Trace Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1

arg 7→ 5

x 7→ 5

x 7→ 5

x 7→ 5

x 7→ 16

x 7→ 16

res 7→ 1

x 7→ 16

. . .

s0
arg 7→ 5

s1
x 7→ 5

res 7→ 0

s2
x 7→ 5

res 7→ 0

s3
x 7→ 5

res 7→ 0

s4
x 7→ 16
res 7→ 0

s7
x 7→ 16
res 7→ 0

s8
x 7→ 16
res 7→ 1

s1
x 7→ 16
res 7→ 1

s2
x 7→ 16
res 7→ 1

s1
x 7→ 1

res 7→ 5

I Initial state on start node
I Transfer functions across

edges
8 infinite number of traces
8 some traces might be

infinite

Overview of Static Analysis
Static Analysis Framework

Trace Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1

arg 7→ 5

x 7→ 5

x 7→ 5

x 7→ 5

x 7→ 16

x 7→ 16

res 7→ 1

x 7→ 16

. . .

s0
arg 7→ 5

s1
x 7→ 5

res 7→ 0

s2
x 7→ 5

res 7→ 0

s3
x 7→ 5

res 7→ 0

s4
x 7→ 16
res 7→ 0

s7
x 7→ 16
res 7→ 0

s8
x 7→ 16
res 7→ 1

s1
x 7→ 16
res 7→ 1

s2
x 7→ 16
res 7→ 1

s1
x 7→ 1

res 7→ 5

s9
x 7→ 1

res 7→ 5

I Initial state on start node
I Transfer functions across

edges
8 infinite number of traces
8 some traces might be

infinite

Overview of Static Analysis
Static Analysis Framework

Trace Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1

arg 7→ 5

x 7→ 5

x 7→ 5

x 7→ 5

x 7→ 16

x 7→ 16

res 7→ 1

x 7→ 16

. . .

arg 7→ 42
s0

arg 7→ 5
s1

x 7→ 5
res 7→ 0

s2
x 7→ 5

res 7→ 0

s3
x 7→ 5

res 7→ 0

s4
x 7→ 16
res 7→ 0

s7
x 7→ 16
res 7→ 0

s8
x 7→ 16
res 7→ 1

s1
x 7→ 16
res 7→ 1

s2
x 7→ 16
res 7→ 1

s1
x 7→ 1

res 7→ 5

s9
x 7→ 1

res 7→ 5

I Initial state on start node
I Transfer functions across

edges
8 infinite number of traces
8 some traces might be

infinite

Overview of Static Analysis
Static Analysis Framework

Collecting Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1?

I From the set of all traces
to set of all states

I multiple predecessors:
take union

I lose “temporal” relations
I fixpoint computation
I may not terminate

Overview of Static Analysis
Static Analysis Framework

Collecting Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1?

S0 7→ arg ∈ Z

I From the set of all traces
to set of all states

I multiple predecessors:
take union

I lose “temporal” relations
I fixpoint computation
I may not terminate

Overview of Static Analysis
Static Analysis Framework

Collecting Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1?

S3 7→ {(x, res)|x = 2k + 1, res = 0}

S4 7→ {(x, res)|x = 6k + 2, res = 0}

I From the set of all traces
to set of all states

I multiple predecessors:
take union

I lose “temporal” relations
I fixpoint computation
I may not terminate

Overview of Static Analysis
Static Analysis Framework

Collecting Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1?

S4 7→ {(x, res)|x = 6k + 2, res = 0}

S6 7→ {(x, res)|x = k, res = 0}

S7 7→ {(x, res)|x = k, res = 0}

I From the set of all traces
to set of all states

I multiple predecessors:
take union

I lose “temporal” relations
I fixpoint computation
I may not terminate

Overview of Static Analysis
Static Analysis Framework

Collecting Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1?

S4 7→ {(x, res)|x = 6k + 2, res = 0}

S6 7→ {(x, res)|x = k, res = 0}

S7 7→ {(x, res)|x = k, res = 0}

I From the set of all traces
to set of all states

I multiple predecessors:
take union

I lose “temporal” relations
I fixpoint computation
I may not terminate

Overview of Static Analysis
Static Analysis Framework

Collecting Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1?

S1 7→ {(x, res)|x = k, res = 0}

S8 7→ {(x, res)|x = k, res = 1}

S1 7→ {(x, res)|x = k, res ∈ {0, 1}}

I From the set of all traces
to set of all states

I multiple predecessors:
take union

I lose “temporal” relations
I fixpoint computation
I may not terminate

Overview of Static Analysis
Static Analysis Framework

Collecting Semantics

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

res = 0 x = arg

x > 1?

odd(x)?

x = 3× x + 1

even(x)?

x = x/2

res = res + 1

x ≤ 1?

S1 7→ {(x, res)|x = k, res = 0}

S8 7→ {(x, res)|x = k, res = 1}

S1 7→ {(x, res)|x = k, res ∈ {0, 1}}

I From the set of all traces
to set of all states

I multiple predecessors:
take union

I lose “temporal” relations
I fixpoint computation
I may not terminate

Overview of Static Analysis
Static Analysis Framework

Static Analysis framework

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

I Replace set of states ...
I ... by one element in an

abstract lattice
I Over-approximation and

false alarms
I Trade-off between precision

and computation time

Overview of Static Analysis
Static Analysis Framework

Static Analysis framework

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

I Replace set of states ...
I ... by one element in an

abstract lattice
I Over-approximation and

false alarms
I Trade-off between precision

and computation time

Overview of Static Analysis
Static Analysis Framework

Static Analysis framework

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

I Replace set of states ...
I ... by one element in an

abstract lattice
I Over-approximation and

false alarms
I Trade-off between precision

and computation time

Overview of Static Analysis
Static Analysis Framework

Static Analysis framework

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

I Replace set of states ...
I ... by one element in an

abstract lattice
I Over-approximation and

false alarms
I Trade-off between precision

and computation time

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t
I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Static Analysis Framework

Correctness and Termination

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

F [F [F [+∞

F] F] F]N

F [F [

∪

F] F]

t

I Abstract transfer functions F]

I Merge abstract states for nodes with multiple predecessors
I Correction: Do we include all concrete states in the end?
I Termination: Converge in a finite number of steps
I Abstract interpretation: A systematic way to build correct and

terminating analyses

Overview of Static Analysis
Abstract Interpretation

Galois connection and insertion
I α returns an abstraction from a set of concrete states
I γ returns the set of concrete states corresponding to an abstraction
I Following properties must hold:

1. α and γ are monotonic
2. ∀v [∈ L[, v [v[(γ ◦ α)(v [)
3. ∀v] ∈ L], (α ◦ γ)(v]) v v]

I Theorem [Cousot]: If F] w α ◦ F [◦ γ, abstraction is correct.

v [

v]

α(v [)

γ ◦ α(v [)

γ(v])

α ◦ γ(v])

v
]

v
[

γ

α

α

γ

Overview of Static Analysis
Abstract Interpretation

Galois connection and insertion
I α returns an abstraction from a set of concrete states
I γ returns the set of concrete states corresponding to an abstraction
I Following properties must hold:

1. α and γ are monotonic
2. ∀v [∈ L[, v [v[(γ ◦ α)(v [)
3. ∀v] ∈ L], (α ◦ γ)(v]) = v]

I Theorem [Cousot]: If F] w α ◦ F [◦ γ, abstraction is correct.

v [

v]

α(v [)

γ ◦ α(v [)

γ(v])
v

[
γ

α

α

γ

Overview of Static Analysis
Abstract Interpretation

Relational and Non-relational Lattices
Non-relational domain
I Considers each variable

independently
4 Simpler and less costly
8 lose properties over 2+

variables

Example: intervals

x

y

Relational domain
I Considers several variables at

once
4 More precise
8 More complex and costly

Example: Polyhedra

x

y

Overview of Static Analysis
Abstract Interpretation

Widening
S0

S1

S2

S3

S4

S5

x = arg x = 0

x > 0?

y = y + 1

x = x − 1

t x ≤ 0?

S1 (before) S4 S1 (after)
y ∈ [0; 0] [1; 1] [0; 1]=t

I for loop nodes, state grows
slowly at each step

I convergence could require
infinite time

I replace t with widening
operator O:

correctness x t y v xOy
termination no infinitely growing

sequence
x0Ox1O . . .Oxn . . .

Overview of Static Analysis
Abstract Interpretation

Widening
S0

S1

S2

S3

S4

S5

x = arg x = 0

x > 0?

y = y + 1

x = x − 1

t x ≤ 0?

S1 (before) S4 S1 (after)
y ∈ [0; 1] [1; 2] [0; 2]=t

I for loop nodes, state grows
slowly at each step

I convergence could require
infinite time

I replace t with widening
operator O:

correctness x t y v xOy
termination no infinitely growing

sequence
x0Ox1O . . .Oxn . . .

Overview of Static Analysis
Abstract Interpretation

Widening
S0

S1

S2

S3

S4

S5

x = arg x = 0

x > 0?

y = y + 1

x = x − 1

t x ≤ 0?

S1 (before) S4 S1 (after)
y ∈ [0; 2] [1; 3] [0; 3]=t

I for loop nodes, state grows
slowly at each step

I convergence could require
infinite time

I replace t with widening
operator O:

correctness x t y v xOy
termination no infinitely growing

sequence
x0Ox1O . . .Oxn . . .

Overview of Static Analysis
Abstract Interpretation

Widening
S0

S1

S2

S3

S4

S5

x = arg x = 0

x > 0?

y = y + 1

x = x − 1

O x ≤ 0?

S1 (before) S4 S1 (after)
y ∈ [0; 2] [1; 3] [0; +∞]=O

I for loop nodes, state grows
slowly at each step

I convergence could require
infinite time

I replace t with widening
operator O:

correctness x t y v xOy
termination no infinitely growing

sequence
x0Ox1O . . .Oxn . . .

Overview of Static Analysis
Abstract Interpretation

Widening
S0

S1

S2

S3

S4

S5

x = arg x = 0

x > 0?

y = y + 1

x = x − 1

O x ≤ 0?

S1 (before) S4 S1 (after)
y ∈ [0; 2] [1; 3] [0; +∞]=O

lower bound stable:
don’t change

I for loop nodes, state grows
slowly at each step

I convergence could require
infinite time

I replace t with widening
operator O:

correctness x t y v xOy
termination no infinitely growing

sequence
x0Ox1O . . .Oxn . . .

Overview of Static Analysis
Abstract Interpretation

Widening
S0

S1

S2

S3

S4

S5

x = arg x = 0

x > 0?

y = y + 1

x = x − 1

O x ≤ 0?

S1 (before) S4 S1 (after)
y ∈ [0; 2] [1; 3] [0; +∞]=O

upper bound grows:
widen interval

I for loop nodes, state grows
slowly at each step

I convergence could require
infinite time

I replace t with widening
operator O:

correctness x t y v xOy
termination no infinitely growing

sequence
x0Ox1O . . .Oxn . . .

Overview of Static Analysis
Abstract Interpretation

Widening
S0

S1

S2

S3

S4

S5

x = arg x = 0

x > 0?

y = y + 1

x = x − 1

O x ≤ 0?

S1 (before) S4 S1 (after)
y ∈ [0; +∞] [1; +∞] [0; +∞]=O

check fixpoint is
reached

I for loop nodes, state grows
slowly at each step

I convergence could require
infinite time

I replace t with widening
operator O:

correctness x t y v xOy
termination no infinitely growing

sequence
x0Ox1O . . .Oxn . . .

Overview of Static Analysis
Abstract Interpretation

Narrowing
S0

S1 S5

S2

S3

S4

S6

arg ≤ 300?

x = arg y = 0

y ≤ x?

y = y + 1

O y > x?

arg > 300?

S2 (before) S4 S2 (after)
y ∈ [0; 0] [1; 1] [0; +∞]=O

widen and propagate
new bound

Recover some precision
I Widening can be very coarse
I Use narrowing after reaching

fixpoint:
correctness y v (x M y) v x
termination no infinitely decreasing

sequence
I In practice, very often better

to directly improve widening

Overview of Static Analysis
Abstract Interpretation

Narrowing
S0

S1 S5

S2

S3

S4

S6

arg ≤ 300?

x = arg y = 0

y ≤ x?

y = y + 1

O y > x?

arg > 300?

S2 (before) S4 S2 (after)
y ∈ [0; +∞] [1; 301] [0; +∞]=O

∞ may be too much
try to narrow it down

Recover some precision
I Widening can be very coarse
I Use narrowing after reaching

fixpoint:
correctness y v (x M y) v x
termination no infinitely decreasing

sequence
I In practice, very often better

to directly improve widening

Overview of Static Analysis
Abstract Interpretation

Narrowing
S0

S1 S5

S2

S3

S4

S6

arg ≤ 300?

x = arg y = 0

y ≤ x?

y = y + 1

M y > x?

arg > 300?

S2 (before) S4 S2 (after)
y ∈ [0; +∞] [1; 301] [0; 301]=M

Candidate bound
to be propagated

Recover some precision
I Widening can be very coarse
I Use narrowing after reaching

fixpoint:
correctness y v (x M y) v x
termination no infinitely decreasing

sequence
I In practice, very often better

to directly improve widening

Overview of Static Analysis
Abstract Interpretation

Narrowing
S0

S1 S5

S2

S3

S4

S6

arg ≤ 300?

x = arg y = 0

y ≤ x?

y = y + 1

M y > x?

arg > 300?

S2 (before) S4 S2 (after)
y ∈ [0; 301] [1; 301] [0; 301]=M

check new fixpoint
is reached

Recover some precision
I Widening can be very coarse
I Use narrowing after reaching

fixpoint:
correctness y v (x M y) v x
termination no infinitely decreasing

sequence
I In practice, very often better

to directly improve widening

Overview of Static Analysis
Abstract Interpretation

Narrowing
S0

S1 S5

S2

S3

S4

S6

arg ≤ 300?

x = arg y = 0

y ≤ x?

y = y + 1

O y > x?

arg > 300?

S2 (before) S4 S2 (after)
y ∈ [0; 0] [1; 1] [0; 301]=O

widen and propagate
new bound

Recover some precision
I Widening can be very coarse
I Use narrowing after reaching

fixpoint:
correctness y v (x M y) v x
termination no infinitely decreasing

sequence
I In practice, very often better

to directly improve widening

Overview of Static Analysis
Abstract Interpretation

Narrowing
S0

S1 S5

S2

S3

S4

S6

arg ≤ 300?

x = arg y = 0

y ≤ x?

y = y + 1

O y > x?

arg > 300?

S2 (before) S4 S2 (after)
y ∈ [0; 301] [1; 301] [0; 301]=O

fixpoint reached

Recover some precision
I Widening can be very coarse
I Use narrowing after reaching

fixpoint:
correctness y v (x M y) v x
termination no infinitely decreasing

sequence
I In practice, very often better

to directly improve widening

Overview of Static Analysis
Abstract Interpretation

Reduced product
Question
We have information from two domains:
Intervals:
I x ∈ [0; 20]
I y ∈ [5; 10]

Octagons:
0 ≤ x − y ≤ 20

What can be said about x and y?

Answers
a x ∈ [0; 20], y ∈ [5; 10]; 0 ≤ x − y ≤ 20
b x ∈ [5; 20], y ∈ [5; 10], 0 ≤ x − y ≤ 15
c x ∈ [5; 20], y ∈ [5; 10], 0 ≤ x − y ≤ 10
d x ∈ [5; 20], y ∈ [0; 20], 0 ≤ x − y ≤ 20

Back to presentation See solution Skip quiz

Overview of Static Analysis
Abstract Interpretation

Reduced product

y

x

y

x

I Combining abstract domains
I reduce abstract value from

one domain using information
from the other

8 In practice, not as simple and
generic as it looks

8 Combining transfer function is
complex

Overview of Static Analysis
Abstract Interpretation

Reduced product

y

x

y

x

I Combining abstract domains
I reduce abstract value from

one domain using information
from the other

8 In practice, not as simple and
generic as it looks

8 Combining transfer function is
complex

Overview of Static Analysis
Abstract Interpretation

Reduced product

y

x

y

x

I Combining abstract domains
I reduce abstract value from

one domain using information
from the other

8 In practice, not as simple and
generic as it looks

8 Combining transfer function is
complex

Overview of Static Analysis
Abstract Interpretation

Reduced product

y

x

y

x

I Combining abstract domains
I reduce abstract value from

one domain using information
from the other

8 In practice, not as simple and
generic as it looks

8 Combining transfer function is
complex

Overview of Static Analysis
Abstract Interpretation

Reduced product

y

x

y

x

I Combining abstract domains
I reduce abstract value from

one domain using information
from the other

8 In practice, not as simple and
generic as it looks

8 Combining transfer function is
complex

Overview of Static Analysis
Abstract Interpretation

Reduced product

y

x

y

x

I Combining abstract domains
I reduce abstract value from

one domain using information
from the other

8 In practice, not as simple and
generic as it looks

8 Combining transfer function is
complex

Overview of Static Analysis
Abstract Interpretation

Reduced product

y

x

y

x

I Combining abstract domains
I reduce abstract value from

one domain using information
from the other

8 In practice, not as simple and
generic as it looks

8 Combining transfer function is
complex

Overview of Static Analysis
Abstract Interpretation

Reduced product

y

x

y

x

I Combining abstract domains
I reduce abstract value from

one domain using information
from the other

8 In practice, not as simple and
generic as it looks

8 Combining transfer function is
complex

Overview of Static Analysis
Abstract Interpretation

Reduced product

y

x

y

x

I Combining abstract domains
I reduce abstract value from

one domain using information
from the other

8 In practice, not as simple and
generic as it looks

8 Combining transfer function is
complex

Overview of Static Analysis
Abstract Interpretation

Reduced product

y

x

y

x

I Combining abstract domains
I reduce abstract value from

one domain using information
from the other

8 In practice, not as simple and
generic as it looks

8 Combining transfer function is
complex

Overview of Static Analysis
Abstract Interpretation

Reduced product

y

x

y

x

I Combining abstract domains
I reduce abstract value from

one domain using information
from the other

8 In practice, not as simple and
generic as it looks

8 Combining transfer function is
complex

Overview of Static Analysis
Abstract Interpretation

Reduced product

y

x

y

x

I Combining abstract domains
I reduce abstract value from

one domain using information
from the other

8 In practice, not as simple and
generic as it looks

8 Combining transfer function is
complex

Overview of Static Analysis
Abstract Interpretation

Reduced product

y

x

I Combining abstract domains
I reduce abstract value from

one domain using information
from the other

8 In practice, not as simple and
generic as it looks

8 Combining transfer function is
complex

Overview of Static Analysis
Abstract Interpretation

Reduced product

y

x

I Combining abstract domains
I reduce abstract value from

one domain using information
from the other

8 In practice, not as simple and
generic as it looks

8 Combining transfer function is
complex

Overview of Static Analysis
Abstract Interpretation

Trace Partitioning
S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

c 6= 0? c == 0?

x = 10 x = 33

c 6= 0?

x = x + 1

c == 0?

x = x − 1

S5 S6 S8 S10
c Z Z 0 Z
x [10; 33] [10; 33] [10; 33] [9; 34]

I Consider several abstract
traces separately...

I ...At least for some time
4 More precise than collecting

semantics
8 Finding appropriate partition

is difficult

Overview of Static Analysis
Abstract Interpretation

Trace Partitioning
S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

c 6= 0? c == 0?

x = 10 x = 33

c 6= 0?

x = x + 1

c == 0?

x = x − 1

S5 S6 S8 S10
c 0 ⊥ 0 0
x 33 ⊥ 33 32
c Z Z 0 Z
x 10 10 10 [9; 11]

I Consider several abstract
traces separately...

I ...At least for some time
4 More precise than collecting

semantics
8 Finding appropriate partition

is difficult

Overview of Static Analysis
Abstract Interpretation

Trace Partitioning
S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

c 6= 0? c == 0?

x = 10 x = 33

c 6= 0?

x = x + 1

c == 0?

x = x − 1

S5 S6 S8 S10
c 0 ⊥ 0 0
x 33 ⊥ 33 32
c [1; +∞] [1; +∞] ⊥ [1; +∞]
x 10 10 ⊥ 11
c [−∞;−1] [−∞;−1] ⊥ [−∞;−1]
x 10 10 ⊥ 11

I Consider several abstract
traces separately...

I ...At least for some time
4 More precise than collecting

semantics
8 Finding appropriate partition

is difficult

Analyzing C code with Frama-C

Context

Overview of Static Analysis

Analyzing C code with Frama-C
The Frama-C platform
ACSL
Frama-C for Software Assessment

EVA Plugin

Analyzing C code with Frama-C Abstract interpretation in practice

A few tools
I Polyspace Verifier: check absence of runtime errors (C/C++/Ada)

https://fr.mathworks.com/products/polyspace.html

I ASTRÉE: absence of runtime errors without false alarm in
SCADE-generated code https://www.absint.com/astree/index.htm

I Verasco: certified (in Coq) analyzer http://compcert.inria.fr/verasco/

I aiT/StackAnalyzer: WCET and stack size (assembly code)
https://www.absint.com/ait/

I FLUCTUAT: accuracy of floating-point computations and origin of
rounding errors http://www.lix.polytechnique.fr/~putot/fluctuat.html

I Frama-C: platform for analyzing C code, including through
abstract interpretation https://frama-c.com

https://fr.mathworks.com/products/polyspace.html
https://www.absint.com/astree/index.htm
http://compcert.inria.fr/verasco/
https://www.absint.com/ait/
http://www.lix.polytechnique.fr/~putot/fluctuat.html
https://frama-c.com

Analyzing C code with Frama-C
The Frama-C platform

Frama-C at a glance

I A Framework for modular analysis of C code.
I http://frama-c.com/

I Developed at CEA Tech List and Inria
I Released under LGPL license (v17.0 Chlorine in June 2018)
I Kernel based on CIL (Necula et al. – Berkeley).
I ACSL annotation language.
I Extensible platform

I Collaboration of analyses over same code
I Inter plug-in communication through ACSL formulas.
I Adding specialized plug-in is easy

http://frama-c.com/

Analyzing C code with Frama-C
The Frama-C platform

Some plugins
included in main distribution

distributed externally

Frama-C Plug-Ins

Dynamic Analysis

Executable-ACSL

PathCrawler

SANTE

Concurrency

MthreadTemporal Properties

CaFE

Aoraï

Formal Methods

Deductive Verification

WPJessie

Abstract Interpretation

EVA

From Analysis

Code Transformation

Semantic constant folding

Slicing

Spare code

Browsing of unfamiliar code

Scope & Data-flow browsing

Variable occurrences

Impact Analysis

Metrics computation

Analyzing C code with Frama-C
The Frama-C platform

Frama-C Kernel
Main role
I Parsing and pretty-printing C code
I Manage internal state of plugins
I Manage properties status
I Orchestrate inter-plugins collaboration
I Save and load internal state

Example

frama-c examples/code.c \
-val -main f \
-then -wp \
-then -save code.sav

frama-c-gui -load code.sav
frama-c -load code.sav -report

Analyzing C code with Frama-C
ACSL ANSI/ISO C Specification Language

Presentation
I Based on the notion of contract, like in Eiffel
I Allows users to specify functional properties of their code
I Allows communication between various plugins
I Independent from a particular analysis
I ACSL manual at

https://github.com/acsl-language/acsl/releases

Basic Components
I First-order logic
I Pure C expressions
I C types + Z (integer) and R (real)
I Built-ins predicates and logic functions, particularly over pointers.

https://github.com/acsl-language/acsl/releases

Analyzing C code with Frama-C
ACSL

Integer Arithmetic in ACSL

I All operations are done over Z: no overflow
I ACSL predicate INT_MIN <= x + y <= INT_MAX
⇔
C operation x+y does not overflow (undefined behavior)

I (int)z ≡ z mod 28∗sizeof(int)

I and INT_MIN <= (int)z <= INT_MAX

Analyzing C code with Frama-C
ACSL

Floating-point and Real Arithmetic

I Operations over R: infinite precision
I \round_double(r,\NearestEven) to explicitly choose

rounding mode
I predicates \is_finite(d), \is_plus_infinity(d),

\is_NaN(d), ...
I function \exact(x): the value that C variable x would have if

all computations had been done using R. \round_error is the
distance between x and \exact(x)

I typical specification:
\round_error(\result) <= acceptable_limit

Analyzing C code with Frama-C
ACSL

Memory description in ACSL

s[0].x padding s[0].y s[1].x padding s[1].y

&s[0] &s[1]

struct S {
short x;
int y;
} s[2];

\valid(&s[0]+(0 .. 1))
\valid((char*)&s[0] + (0 .. 15))
!\initialized(*((char*)&s[0].x+2))
\block_length(&s[0]) == 16
\base_addr(&s[0].y) == s
\offset(&s[1].y) == 12
\separated(&s[0],&s[1])

Analyzing C code with Frama-C
ACSL

ACSL Quiz

Question
If we have \valid(p+(0 .. 2)), with p a pointer to int, and
sizeof(int)==4, what can we say about \block_length(p)?

Answers
a \block_length(p) == 2

b \block_length(p) == 3

c \block_length(p) == 8

d \block_length(p) == 12

e \block_length(p) >= 12

Back to presentation See solution Skip quiz

Analyzing C code with Frama-C
ACSL

Function Contract

/*@ requires R(x);

ensures E(\result,x);

behavior extra:
assumes A(x);
ensures more_result(\result,x);

*/
int f(int x);

Analyzing C code with Frama-C
ACSL

Function Contract

/*@ requires R(x);

ensures E(\result,x);

behavior extra:
assumes A(x);
ensures more_result(\result,x);

*/
int f(int x);

What is required from caller

What the function guaran-
tees when returning success-
fully

Analyzing C code with Frama-C
ACSL

Function Contract

/*@ requires R(x);

ensures E(\result,x);

behavior extra:
assumes A(x);
ensures more_result(\result,x);

*/
int f(int x);

Possible to distinguish various cases

Analyzing C code with Frama-C
ACSL

Function contract quiz
Question
Assuming an ACSL function acsl_strlen that returns the offset of
the first ’\0’ char if it exists and -1 otherwise, what would be an
appropriate requires for the standard library function
size_t strlen(const char* s)?

Answers
a acsl_strlen(s) >= 0

b acsl_strlen(s) >=0 &&
\valid(s+ (0 .. acsl_strlen(s)))

c \valid(s + (0 .. acsl_strlen(s)))

d acsl_strlen(s) >= 0 && \valid(s)

Back to presentation See solution Skip quiz

Analyzing C code with Frama-C
ACSL

ACSL Assertions

/*@ assert p == NULL || \valid(p); */
if (p) { *p = 42; }

if (0) { /*@ assert \false; */ exit (1); }

Analyzing C code with Frama-C
ACSL

ACSL Assertions

/*@ assert p == NULL || \valid(p); */
if (p) { *p = 42; }

if (0) { /*@ assert \false; */ exit (1); }

Assess a property at given point

Analyzing C code with Frama-C
ACSL

ACSL Assertions

/*@ assert p == NULL || \valid(p); */
if (p) { *p = 42; }

if (0) { /*@ assert \false; */ exit (1); }

Assess a property at given point

Indicates dead code

Analyzing C code with Frama-C
Frama-C for Software Assessment

What is verified by Frama-C?

Code Properties
I Functional

properties
(contract)

I Absence of
run-time error

I Dependencies
I Termination
I Non-

interference
I Temporal

properties

Perimeter of the verification
I Which part of the code is under

analysis?
I Which initial context?

Trusted Code Base
I ACSL Axioms
I Hypotheses made by analyzers
I Stub Functions
I Frama-C itself

EVA Plugin

Context

Overview of Static Analysis

Analyzing C code with Frama-C

EVA Plugin
Basics
Refining Analysis
Setting Analysis Context

EVA Plugin
Basics

EVA plugin

Credits
I Pascal Cuoq
I Boris Yakobowski
I André Maroneze
I David Buhler
I Valentin Perrelle
I Matthieu Lemerre
I A few other developers...

More information
I http://frama-c.com/download/

frama-c-value-analysis.pdf

http://frama-c.com/download/frama-c-value-analysis.pdf
http://frama-c.com/download/frama-c-value-analysis.pdf

EVA Plugin
Basics

Main Objective

Find the domains of the variables of a program
I based on abstract interpretation
I alarms on operations that may be invalid
I alarms on the specifications that may be invalid
I Correct: if no alarm is raised, no runtime error can occur

EVA Plugin
Basics

Some specificities

I Precise handling of pointers
I Several representation for dynamic allocation (precision vs. time)
I time and memory efficient (as much as achievable)
I Precise enough

I for proving absence of runtime errors on some critical code
I to serve as a back-end for other semantical analyzes through its API

EVA Plugin
Basics

Integer and Floating Point Arithmetic
Corresponding Abstract Domain

small set of integers (by default, cardinal ≤ 8)
] integer interval × modulo information
] finite floating-point interval

Examples
I {0; 40; } = 0 or 40
I [0..40] = an integer between 0 and 40 (inclusive)
I [-..-] = any integer (within the bound of the corresponding

integral type)
I [3..39], 3%4 = 3, 7, 11, 15, 19, 23, 27, 31, 35 or 39
I [0.25..3.125] = floating-point between 0.25 and 3.125 (inclusive)

next

EVA Plugin
Basics

Code sample

int x, y, t, m; double d;
extern char z; char z1;

void f(int c) {
if (c) x = 40;
for (int i = 0; i<=40; i++) {
Frama_C_show_each_loop_1(i);

if (c == i) y = i; }
z1 = z;
t = z;
m=3;
for (int i = 3; i<=40; i+=4) {

if (c == i) m = i; }
if (c) { d = 0.25; } else { d = 3.125; }

}

EVA Plugin
Basics

EVA Result

frama-c -val -main f integer.c

[value] Called Frama_C_show_each_loop_1({0; 1})
[value] Called Frama_C_show_each_loop_1({0; 1; 2})
[value] Called Frama_C_show_each_loop_1([0..16])
[value] Called Frama_C_show_each_loop_1([0..40])
[value] ====== VALUES COMPUTED ======
x IN {0; 40}
y IN [0..40]
z1 IN [--..--]
t IN [-128..127]
m IN [3..39],3%4
d IN [0.25 .. 3.125]

EVA Plugin
Basics

Integers in EVA Quiz

Question
if x is in the interval [-10 .. 10] before the execution of statement

if (x==0) { y = 14; }
else { y = x<0 ? 13 : x + 2; }

What is the value associated to y after the statement?

Answers
a [-8 .. 14]

b [2 .. 13]

c [2 .. 14]

d [3 .. 14]

Back to presentation See solution Skip quiz

EVA Plugin
Basics

Memory Address

Base Address

Global variable
] Formal parameter of main function
] literal string constant
] NULL
] . . .

Addresses
I Base address + Offset (integer)
I Each base has a maximal valid offset
I Abstract Values are sets of addresses

next

EVA Plugin
Basics

Examples of Addresses

Precise Base
I {{&p + {4; 8}}} = address of p shifted from 4 or 8 octets
I {{&”foobar”; }} = Address of literal string "foobar" (shifted from

0)
I {{&NULL + {1024; }}} = Absolute location 1024

Imprecision
I garbled mix of &{x1; . . . ; xn} = unknown address built upon

arithmetic operations over integers and addresses x1; . . . ; xn.
I ANYTHING = top of the lattice. Should not occur in practice

EVA Plugin
Basics

Code Sample

int* x,*z, *t; const char* y; int p[3];
const char* string = " foobar ";

void f(int c) {
if (c) { x = &p[1]; }
else { x = &p[2]; }
y = string;
z = (int*)1024;
t = (int*) ((int)x | 4096);

}

EVA Plugin
Basics

EVA Result

[value] ====== VALUES COMPUTED ======
[value] Values at end of function f:
x IN {{ &p{[1], [2]} }}
y IN {{ "foobar" }}
z IN {1024}
t IN
{{ garbled mix of &{p}
(origin: Arithmetic

{examples/value/address.c:16}) }}

EVA Plugin
Basics

Write to an Address
Abstract Domain
written address = valid left value

adress
× initialized?
× not dangling pointer?

Example

int x,y;
if (e) x = 2;

L: if (e) y = x + 1;

I At L, we know that x equals 2 iff it has been initialized
I Depending on the complexity of e, we know that y equals 3 if x

equals 2next

EVA Plugin
Basics

Code Sample

int X,Y, *p;
void f(int c) {

int x,y;
if (c<=0) x = 2;

L: if (c<=0) y = x + 1; else y = 4;
X = x;
Y = y;
p = c ? &X : &x;

}

int main(int c) {
f(c);
if (Y==4) *p = 3;
return 0;

}

EVA Plugin
Basics

EVA Result

examples/value/address_written.c:8:
[kernel] warning:
accessing uninitialized left-value:
assert \initialized(&x);

examples/value/address_written.c:16:
[kernel] warning:
accessing left-value that
contains escaping addresses:
assert !\dangling(&p);

[value] Values at end of function main:
X IN {2; 3} or UNINITIALIZED
Y IN {3; 4}
p IN {{ &X }} or ESCAPINGADDR
__retres IN {0}

EVA Plugin
Basics

Memory in EVA Quiz
Question
if a is an array of size 3, initialized to 0, and c in [0 .. 2] what
would be the content of a after executing the following statement:

if (c) { a[c] = c; } else a[1] =3;

Answers
a a[0] IN {0}, a[1] IN {0,1,3}, a[2] IN {0,2}

b a[i] IN {0,1,2,3} for all indices
c

a[0] IN {0}, a[1] IN {0,1,2,3} a[2] IN {0,1,2}

d a[0] IN {0}, a[1] IN {1,3}, a[2] IN {2}

Back to presentation See solution Skip quiz

EVA Plugin
Basics

Adding other domains

I New domains can provide additional information:
I equalities between values
I values of symbolic locations
I gauges, affine relation wrt number of loop steps

I Possible to add new domains
I Inter-domain communication done through queries:

val extract_expr :
(exp -> value evaluated) ->
state -> exp -> (value * origin) evaluated

val extract_lval :
(exp -> value evaluated) ->
state -> lval -> typ -> location -> (value * origin) evaluated

next

EVA Plugin
Basics

Example

#include " __fc_built in . h "

int main () {
int x = Frama_C_interval(0,10);
int y = x;
if (y <= 5) {

return x;
} else {
return 10 - x;

}
}

EVA Plugin
Refining Analysis

Loops and Branching
Main options
I option -slevel: allows EVA to explore n separated paths before

joining them
I option -slevel-function: same as previous, but for a

particular function
I annotation loop pragma UNROLL: syntactic loop unrolling
I annotation loop pragma WIDEN HINTS: give bounds for

widening

For specialists only
I option -ilevel: maximum number of elements in the set before

conversion into intervals
I option -plevel: maximum number of distinct array cells

next

EVA Plugin
Refining Analysis

Driving Value through Annotations

I ACSL assertions can be used to restrict propagated domains
I but only if Value can interpret it

/*@ assert x % 2 == 0; */
// potentially useful
/*@ assert \exists integer y; x == 2 * y; */
// useless

I Case analysis using disjunctions

next

EVA Plugin
Refining Analysis

Loop example

int S=0;

int T[5];

int main(void) {
int i;
int *p = &T[0] ;
for (i = 0; i < 5; i++) {

S = S + i; *p++ = S;
}
return S;

}

EVA Plugin
Refining Analysis

Code Sample

int x,y;

void main (int c) {
if (c) { x = 10; } else { x = 33; }
if (!c) { x++; } else { x--; }

if (c<=0) { y = 42; } else { y = 36; }
if (c>0) { y++; } else { y--; }

}

EVA Plugin
Refining Analysis

EVA Result
without slevel
x IN {9; 11; 32; 34}
y IN {35; 37; 41; 43}

with slevel, no assertion

x IN {9; 11; 34}
y IN {37; 41}

with slevel and assertion
/*@ assert c<=0 || c > 0; */

[value] Assertion got status valid.
x IN {9; 34}
y IN {37; 41}

EVA Plugin
Setting Analysis Context

Entry Point

I Which part of the code should be analyzed?
I -main f starts the analysis at function f
I -lib-entry indicates that the the initial global context is not

0-initialized
I -context-width, -context-depth
I Use of a driver function with some builtins to provide

non-determinism:

void f_wrapper() {
setup_analysis_context();
f(arg_1, arg_2);

}

next

EVA Plugin
Setting Analysis Context

Example

int search(char* a, char key) {
char* orig = a;
while (*a) {
if (*a == key) return a - orig;
a++;

}
return -1;

}

EVA Plugin
Setting Analysis Context

Results without context

frama-c -val -context-width 3 -main search context.c

[...]

context.c:3:[kernel] warning: out of bounds read. assert \valid_read(a);
context.c:4:[kernel] warning: out of bounds read. assert \valid_read(a);
context.c:4:[kernel] warning: pointer subtraction:
assert \base_addr(a) == \base_addr(orig);

[value] Recording results for search
[value] done for function search
[value] ====== VALUES COMPUTED ======
[value] Values at end of function search:
a IN {{ &S_a{[0], [1], [2]} }}
orig IN {{ NULL ; &S_a[0] }}
__retres IN {-1; 0; 1; 2}

EVA Plugin
Setting Analysis Context

With Context

#include " __fc_built in . h "
#include " l i m i t s . h "

int search(char* a, char key);

char buffer[1024];

int driver() {
buffer[1023] = 0;
char key = Frama_C_interval(CHAR_MIN, CHAR_MAX);
return search(buffer, key);

}

EVA Plugin
Setting Analysis Context

frama-c -val -context-width 3 -main driver \
context.c context_driver.c -lib-entry \
-slevel 1024

[... No alarm ...]

[value] Values at end of function search:
a IN {{ &buffer + [0..1023] }}
orig IN {{ &buffer[0] }}
__retres IN [-1..1022]

[value] Values at end of function driver:
Frama_C_entropy_source IN [--..--]
buffer[0..1022] IN [--..--]

[1023] IN {0}
key IN [--..--]

EVA Plugin
Setting Analysis Context

External Library Functions

Provide an “implementation” for EVA
I Assumed to match the real implementation
I Write stub directly in C (aimed at ease of analysis, not

performance)
I Provide an ACSL specification
I -val-use-spec f

I Use an EVA built-in (-val-builtin)
I -val-builtins-list

EVA Plugin
Setting Analysis Context

Assumptions made by EVA

Command-line Options
I -val-ignore-recursive-calls assumes recursive calls

have no effect
I -all-rounding-modes do not assume floating-point

computations use same rounding as host machine

ACSL Properties
I Alarms emitted by Value
I Annotations with Unknown status

next

EVA Plugin
Setting Analysis Context

CERT ARR30-C bad code sample
static int *table = NULL;
static size_t size = 0;

int insert_in_table(size_t pos, int value) {
if (size < pos) {

int *tmp;
size = pos + 1;
tmp = (int *)realloc(table, sizeof(*table) * size);
if (tmp == NULL) {

return -1; /* Failure */
}
table = tmp;

}
table[pos] = value;
return 0;

}

EVA Plugin
Setting Analysis Context

Analyzing real code

I D. Delmas and J. Souyris: ASTRÉE: from Research to Industry,
SAS 2007

I TrustInSoft startup (created 2013): https://trust-in-soft.com/

I A. Ourghanlian: Evaluation of static analysis tools used to assess
software important to nuclear power plant safety. In Nuclear
Engineering and Technology, vol 47 issue 2, 2015.

I INGOPCS project: https://www.ingopcs.net

I Open-Source Case Studies:
https://github.com/Frama-C/open-source-case-studies

I A. Maroneze: Analysis of the Chrony NTP server.
http://blog.frama-c.com/index.php?post/2018/06/19/Analyzing-Chrony-with-Frama-C/Eva

https://trust-in-soft.com/
https://www.ingopcs.net
https://github.com/Frama-C/open-source-case-studies
http://blog.frama-c.com/index.php?post/2018/06/19/Analyzing-Chrony-with-Frama-C/Eva

Bibliography

Context

Overview of Static Analysis

Analyzing C code with Frama-C

EVA Plugin

Bibliography Frama-C
General
I Correnson &al. Frama-C User Manual (v17 - Chlorine). May 2018
I Kirchner &al. Frama-C, a Software Analysis Perspective, vol 37 of

Formal Aspects of Computing, March 2015.

ACSL
I Baudin &al. ACSL: ANSI/ISO C Specification Language.

Preliminary Design (v 1.13). May 2018
I Burghardt &al. ACSL by Example (v16.1). December 2017.

https://github.com/fraunhoferfokus/acsl-by-example

EVA
I Cuoq &al. Frama-C’s value analysis plug-in. May 2018
I Blazy &al. Structuring Abstract Interpreters through State and

Value Abstractions. VMCAI, January 2017

https://github.com/fraunhoferfokus/acsl-by-example

Bibliography Static Analysis

Course
I Patrick Cousot, MIT 2005

http://web.mit.edu/afs/athena.mit.edu/course/
16/16.399/www/

Books
I Hanne Nielson, Flemming Nielson, and Chris Hankin. Principles of

Program Analysis. Springer 1999
I Neil Jones and Flemming Nielson, Abstract Interpretation: a

Semantics-Based Tool for Program Analysis. In Handbook of
Logic in Computer Science, vol. 4, Oxford University Press 1994

http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Bibliography Static Analysis (cont’d)

Founding Articles
I Patrick and Radhia Cousot, Abstract Interpretation: a Unified

Lattice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints. PoPL’77

I Patrick Cousot and Nicolas Halbwachs, Automatic Discovery of
Linear Restraints Among Variables of a Program. PoPL’78

I Patrick and Radhia Cousot, Systematic Design of Program
Analysis Frameworks. PoPL’79

I http:
//www.di.ens.fr/~cousot/COUSOTpapers.shtml

http://www.di.ens.fr/~cousot/COUSOTpapers.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers.shtml

Bibliography

Solutions to Quizzes

Bibliography Reduced product
Question
We have information from two domains:
Intervals:
I x ∈ [0; 20]
I y ∈ [5; 10]

Octagons:
0 ≤ x − y ≤ 20

What can be said about x and y?

Answers
a x ∈ [0; 20], y ∈ [5; 10]; 0 ≤ x − y ≤ 20 8

b x ∈ [5; 20], y ∈ [5; 10], 0 ≤ x − y ≤ 15
c x ∈ [5; 20], y ∈ [5; 10], 0 ≤ x − y ≤ 10
d x ∈ [5; 20], y ∈ [0; 20], 0 ≤ x − y ≤ 20

Back to presentation See solution

Bibliography Reduced product
Question
We have information from two domains:
Intervals:
I x ∈ [0; 20]
I y ∈ [5; 10]

Octagons:
0 ≤ x − y ≤ 20

What can be said about x and y?

Answers
a x ∈ [0; 20], y ∈ [5; 10]; 0 ≤ x − y ≤ 20
b x ∈ [5; 20], y ∈ [5; 10], 0 ≤ x − y ≤ 15 4

c x ∈ [5; 20], y ∈ [5; 10], 0 ≤ x − y ≤ 10
d x ∈ [5; 20], y ∈ [0; 20], 0 ≤ x − y ≤ 20

Back to presentation See solution

Bibliography Reduced product
Question
We have information from two domains:
Intervals:
I x ∈ [0; 20]
I y ∈ [5; 10]

Octagons:
0 ≤ x − y ≤ 20

What can be said about x and y?

Answers
a x ∈ [0; 20], y ∈ [5; 10]; 0 ≤ x − y ≤ 20
b x ∈ [5; 20], y ∈ [5; 10], 0 ≤ x − y ≤ 15
c x ∈ [5; 20], y ∈ [5; 10], 0 ≤ x − y ≤ 10 8

d x ∈ [5; 20], y ∈ [0; 20], 0 ≤ x − y ≤ 20

Back to presentation See solution

Bibliography Reduced product
Question
We have information from two domains:
Intervals:
I x ∈ [0; 20]
I y ∈ [5; 10]

Octagons:
0 ≤ x − y ≤ 20

What can be said about x and y?

Answers
a x ∈ [0; 20], y ∈ [5; 10]; 0 ≤ x − y ≤ 20
b x ∈ [5; 20], y ∈ [5; 10], 0 ≤ x − y ≤ 15
c x ∈ [5; 20], y ∈ [5; 10], 0 ≤ x − y ≤ 10
d x ∈ [5; 20], y ∈ [0; 20], 0 ≤ x − y ≤ 20 8

Back to presentation See solution

Bibliography ACSL Quiz

Question
If we have \valid(p+(0 .. 2)), with p a pointer to int, and
sizeof(int)==4, what can we say about \block_length(p)?

Answers
a \block_length(p) == 2 8

b \block_length(p) == 3

c \block_length(p) == 8

d \block_length(p) == 12

e \block_length(p) >= 12

Back to presentation See solution

Bibliography ACSL Quiz

Question
If we have \valid(p+(0 .. 2)), with p a pointer to int, and
sizeof(int)==4, what can we say about \block_length(p)?

Answers
a \block_length(p) == 2

b \block_length(p) == 3 8

c \block_length(p) == 8

d \block_length(p) == 12

e \block_length(p) >= 12

Back to presentation See solution

Bibliography ACSL Quiz

Question
If we have \valid(p+(0 .. 2)), with p a pointer to int, and
sizeof(int)==4, what can we say about \block_length(p)?

Answers
a \block_length(p) == 2

b \block_length(p) == 3

c \block_length(p) == 8 8

d \block_length(p) == 12

e \block_length(p) >= 12

Back to presentation See solution

Bibliography ACSL Quiz

Question
If we have \valid(p+(0 .. 2)), with p a pointer to int, and
sizeof(int)==4, what can we say about \block_length(p)?

Answers
a \block_length(p) == 2

b \block_length(p) == 3

c \block_length(p) == 8

d \block_length(p) == 12 8

e \block_length(p) >= 12

Back to presentation See solution

Bibliography ACSL Quiz

Question
If we have \valid(p+(0 .. 2)), with p a pointer to int, and
sizeof(int)==4, what can we say about \block_length(p)?

Answers
a \block_length(p) == 2

b \block_length(p) == 3

c \block_length(p) == 8

d \block_length(p) == 12

e \block_length(p) >= 12 4

Back to presentation See solution

Bibliography Function contract quiz
Question
Assuming an ACSL function acsl_strlen that returns the offset of
the first ’\0’ char if it exists and -1 otherwise, what would be an
appropriate requires for the standard library function
size_t strlen(const char* s)?

Answers
a acsl_strlen(s) >= 0 8

b acsl_strlen(s) >=0 &&
\valid(s+ (0 .. acsl_strlen(s)))

c \valid(s + (0 .. acsl_strlen(s)))

d acsl_strlen(s) >= 0 && \valid(s)

Back to presentation See solution

Bibliography Function contract quiz
Question
Assuming an ACSL function acsl_strlen that returns the offset of
the first ’\0’ char if it exists and -1 otherwise, what would be an
appropriate requires for the standard library function
size_t strlen(const char* s)?

Answers
a acsl_strlen(s) >= 0

b acsl_strlen(s) >=0 &&
4 \valid(s+ (0 .. acsl_strlen(s)))

c \valid(s + (0 .. acsl_strlen(s)))

d acsl_strlen(s) >= 0 && \valid(s)

Back to presentation See solution

Bibliography Function contract quiz
Question
Assuming an ACSL function acsl_strlen that returns the offset of
the first ’\0’ char if it exists and -1 otherwise, what would be an
appropriate requires for the standard library function
size_t strlen(const char* s)?

Answers
a acsl_strlen(s) >= 0

b acsl_strlen(s) >=0 &&
\valid(s+ (0 .. acsl_strlen(s)))

c \valid(s + (0 .. acsl_strlen(s))) 8

d acsl_strlen(s) >= 0 && \valid(s)

Back to presentation See solution

Bibliography Function contract quiz
Question
Assuming an ACSL function acsl_strlen that returns the offset of
the first ’\0’ char if it exists and -1 otherwise, what would be an
appropriate requires for the standard library function
size_t strlen(const char* s)?

Answers
a acsl_strlen(s) >= 0

b acsl_strlen(s) >=0 &&
\valid(s+ (0 .. acsl_strlen(s)))

c \valid(s + (0 .. acsl_strlen(s)))

d acsl_strlen(s) >= 0 && \valid(s) 8

Back to presentation See solution

Bibliography Integers in EVA Quiz

Question
if x is in the interval [-10 .. 10] before the execution of statement

if (x==0) { y = 14; }
else { y = x<0 ? 13 : x + 2; }

What is the value associated to y after the statement?

Answers
a [-8 .. 14] 8

b [2 .. 13]

c [2 .. 14]

d [3 .. 14]

Back to presentation See solution

Bibliography Integers in EVA Quiz

Question
if x is in the interval [-10 .. 10] before the execution of statement

if (x==0) { y = 14; }
else { y = x<0 ? 13 : x + 2; }

What is the value associated to y after the statement?

Answers
a [-8 .. 14]

b [2 .. 13] 8

c [2 .. 14]

d [3 .. 14]

Back to presentation See solution

Bibliography Integers in EVA Quiz

Question
if x is in the interval [-10 .. 10] before the execution of statement

if (x==0) { y = 14; }
else { y = x<0 ? 13 : x + 2; }

What is the value associated to y after the statement?

Answers
a [-8 .. 14]

b [2 .. 13]

c [2 .. 14] 4

d [3 .. 14]

Back to presentation See solution

Bibliography Integers in EVA Quiz

Question
if x is in the interval [-10 .. 10] before the execution of statement

if (x==0) { y = 14; }
else { y = x<0 ? 13 : x + 2; }

What is the value associated to y after the statement?

Answers
a [-8 .. 14]

b [2 .. 13]

c [2 .. 14]

d [3 .. 14] 8

Back to presentation See solution

Bibliography Memory in EVA Quiz
Question
if a is an array of size 3, initialized to 0, and c in [0 .. 2] what
would be the content of a after executing the following statement:

if (c) { a[c] = c; } else a[1] =3;

Answers
a a[0] IN {0}, a[1] IN {0,1,3}, a[2] IN {0,2}

8

b a[i] IN {0,1,2,3} for all indices
c

a[0] IN {0}, a[1] IN {0,1,2,3} a[2] IN {0,1,2}

d a[0] IN {0}, a[1] IN {1,3}, a[2] IN {2}

Back to presentation See solution

Bibliography Memory in EVA Quiz
Question
if a is an array of size 3, initialized to 0, and c in [0 .. 2] what
would be the content of a after executing the following statement:

if (c) { a[c] = c; } else a[1] =3;

Answers
a a[0] IN {0}, a[1] IN {0,1,3}, a[2] IN {0,2}

b a[i] IN {0,1,2,3} for all indices 8

c

a[0] IN {0}, a[1] IN {0,1,2,3} a[2] IN {0,1,2}

d a[0] IN {0}, a[1] IN {1,3}, a[2] IN {2}

Back to presentation See solution

Bibliography Memory in EVA Quiz
Question
if a is an array of size 3, initialized to 0, and c in [0 .. 2] what
would be the content of a after executing the following statement:

if (c) { a[c] = c; } else a[1] =3;

Answers
a a[0] IN {0}, a[1] IN {0,1,3}, a[2] IN {0,2}

b a[i] IN {0,1,2,3} for all indices
c

a[0] IN {0}, a[1] IN {0,1,2,3} a[2] IN {0,1,2}
4

d a[0] IN {0}, a[1] IN {1,3}, a[2] IN {2}

Back to presentation See solution

Bibliography Memory in EVA Quiz
Question
if a is an array of size 3, initialized to 0, and c in [0 .. 2] what
would be the content of a after executing the following statement:

if (c) { a[c] = c; } else a[1] =3;

Answers
a a[0] IN {0}, a[1] IN {0,1,3}, a[2] IN {0,2}

b a[i] IN {0,1,2,3} for all indices
c

a[0] IN {0}, a[1] IN {0,1,2,3} a[2] IN {0,1,2}

d a[0] IN {0}, a[1] IN {1,3}, a[2] IN {2} 8

Back to presentation See solution

	Context
	Overview of Static Analysis
	Static Analysis Framework
	Abstract Interpretation

	Analyzing C code with Frama-C
	The Frama-C platform
	ACSL
	Frama-C for Software Assessment

	EVA Plugin
	Basics
	Refining Analysis
	Setting Analysis Context

	Bibliography

